Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958416

RESUMO

We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime. In particular, we observed the formation of the unstable tetracation of fluorene, above-threshold ionization features in the photoelectron spectra, and evidence of ubiquitous secondary fragmentation. We produced a global fit of all observed time-dependent photoelectron and photoion channels. This global fit includes four parent ions extracted from the mass spectra, 15 kinetic-energy-resolved ionic fragments extracted from ion velocity map imaging, and five photoelectron channels obtained from electron velocity map imaging. The fit allowed for the extraction of 60 lifetimes of various metastable photoinduced intermediates.

2.
J Phys Chem A ; 128(9): 1593-1599, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407935

RESUMO

Water dimer (H2O)2─a vital component of the earth's atmosphere─is an important prototypical hydrogen-bonded system. It provides direct insights into fundamental chemical and biochemical processes, e.g., proton transfer and ionic supramolecular dynamics, occurring in astro- and atmospheric chemistry. Exploiting a purified molecular beam of water dimer and multimass ion imaging, we report the simultaneous detection of all generated ion products of (H2O)2+ fragmentation following single ionization. Detailed information about ion yields and reaction energetics of 13 ion-radical pathways, 6 of which are new, of (H2O)2+ are presented, including strong 18O-isotope effects.

3.
J Chem Phys ; 157(22): 224306, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546796

RESUMO

It is well established that an isolated benzene radical anion is not electronically stable. In the present study, we experimentally show that electron attachment to benzene clusters leads to weak albeit unequivocal occurrence of a C6H6 - moiety. We propose here-based on electronic structure calculation-that this moiety actually corresponds to linear structures formed by the opening of the benzene ring via electron attachment. The cluster environment is essential in this process since it quenches the internal energy released upon ring opening, which in the gas phase leads to further dissociation of this anion.

4.
Phys Chem Chem Phys ; 23(26): 14340-14351, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169306

RESUMO

We investigate the photodissociation dynamics of the C-Cl bond in chloroalkanes CH3Cl, n-C3H7Cl, i-C3H7Cl, n-C5H11Cl, combining velocity map imaging (VMI) experiment and direct ab initio dynamical simulations. The Cl fragment kinetic energy distributions (KEDs) from the VMI experiment exhibit a single peak with maximum close to 0.8 eV, irrespective of the alkyl chain length and C-Cl bond position. In contrary to CH3Cl, where less than 10% of the available energy is deposited into the internal excitation of the CH3 fragment, for all higher chloroalkanes around 40% to 60% of the available energy goes into the alkyl fragment excitation. We apply the classical hard spheres and spectator model to explain the energy partitioning, and compare the classical approach with direct ab initio dynamics simulations. The alkyl chain appears to be a soft, energy absorbing unit. We further investigate the role of the spin-orbit effects on the excitation and dynamics. Combining our experimental data with theory allows us to derive the probability of the direct absorption into the triplet electronic state as well as the probabilities for intersystem crossing. The results indicate an increasing direct absorption into the triplet state with increasing alkyl chain length.

5.
Phys Chem Chem Phys ; 22(27): 15312-15320, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32627769

RESUMO

We investigate the ionization induced chemistry of hydrogen peroxide in (H2O2)N clusters generated after the pickup of individual H2O2 molecules on large free ArM, M[combining macron]≈ 160, nanoparticles in molecular beams. Positive and negative ion mass spectra are recorded after an electron ionization of the clusters at energies 5-70 eV and after a slow electron attachment (below 4 eV), respectively. The spectra demonstrate that (H2O2)N clusters with N≥ 20 are formed on argon nanoparticles. This is the first experimental report on hydrogen peroxide clusters in molecular beams. The major negative cluster ion series (H2O2)nO2- indicates O2- ion formation. The dissociative electron attachment to H2O2 molecules in the gas phase yielded only OH- and O- (Nandi et al., Chem. Phys. Lett., 2003, 373, 454). These ions and the series containing them are much less abundant in the clusters. We propose a sequence of ion-molecule and radical reactions to explain the formation of O2-, HO2- and other ions observed in the negatively charged cluster ion series. Since hydrogen peroxide plays an important role in many areas of chemistry from the Earth's atmosphere to biological tissues, our study opens new horizons for experimental investigations of hydrogen peroxide chemistry in complex environments.

6.
J Phys Chem A ; 124(38): 7633-7643, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32866382

RESUMO

We investigate the photodissociation of CH3Cl at 193.3 nm using the velocity map imaging technique in (CH3Cl)n clusters in comparison with isolated molecules. Our results for the isolated molecules are in excellent agreement with the previous study of Cl fragments, and we extend it by detecting also the CH3(ν = 0) fragments. For the clusters, the Cl (and Cl*) and CH3 fragment images are dominated by intense central isotropic features. The corresponding kinetic energy distributions (KEDs) reveal significant differences in the CH3 and Cl fragment dynamics. While the CH3 fragments exhibit a very narrow near-zero kinetic energy peak, pointing to almost complete caging of CH3 fragments, the Cl (and Cl*) fragments show more structured KEDs extending all the way to the maximum available kinetic energy. The Cl KED spectra have a bimodal character with two broad peaks close to zero and around 0.6 eV. We observe a higher ICH3(ν=0)/ICl signal ratio from the clusters compared to the monomers. This is attributed to an efficient quenching of the higher vibrationally excited ν2 states of the CH3 fragments generated in the photodissociation. Collisional quenching of these excited states in clusters enhances the detected CH3(ν = 0) state. Finally, we determine the [Cl*]/[Cl] branching ratio for the photodissociation pathways in the clusters as ≈0.55 ± 0.15 compared to 0.86 for the isolated molecules, which is also attributed to the collisional quenching of the excited state in the clusters. The clusters and photofragment dynamics are discussed.

7.
J Chem Phys ; 153(10): 104303, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933272

RESUMO

The reduction of 4-nitrothiophenol (NTP) to 4-4'-dimercaptoazobenzene (DMAB) on laser illuminated noble metal nanoparticles is one of the most widely studied plasmon mediated reactions. The reaction is most likely triggered by a transfer of low energy electrons from the nanoparticle to the adsorbed molecules. Besides the formation of DMAB, dissociative side reactions of NTP have also been observed. Here, we present a crossed electron-molecular beam study of free electron attachment to isolated NTP in the gas-phase. Negative ion yields are recorded as a function of the electron energy, which helps to assess the accessibility of single electron reduction pathways after photon induced electron transfer from nanoparticles. The dominant process observed with isolated NTP is associative electron attachment leading to the formation of the parent anion of NTP. Dissociative electron attachment pathways could be revealed with much lower intensities, leading mainly to the loss of functional groups. The energy gained by one electron reduction of NTP may also enhance the desorption of NTP from nanoparticles. Our supporting experiments with small clusters, then, show that further reaction steps are necessary after electron attachment to produce DMAB on the surfaces.

8.
Photochem Photobiol Sci ; 16(4): 507-518, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27942676

RESUMO

Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dedic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1O2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 µM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1O2 quencher sodium azide (NaN3, 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results show the significant role of the SOFDF mechanism in the DF of PpIX at high concentrations and at atmospheric partial pressure of oxygen and should be considered when developing diagnostic tools for clinical applications.

9.
ACS Earth Space Chem ; 7(11): 2275-2286, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38026808

RESUMO

The wavelength control of photochemistry usually results from ultrafast dynamics following the excitation of different electronic states. Here, we investigate the CF3COCl molecule, exhibiting wavelength-dependent photochemistry both via (i) depositing increasing internal energy into a single state and (ii) populating different electronic states. We reveal the mechanism behind the photon-energy dependence by combining nonadiabatic ab initio molecular dynamics techniques with the velocity map imaging experiment. We describe a consecutive mechanism of photodissociation where an immediate release of Cl taking place in an excited electronic state is followed by a slower ground-state dissociation of the CO fragment. The CO release is subject to an activation barrier and is controlled by excess internal energy via the excitation wavelength. Therefore, a selective release of CO along with Cl can be achieved. The mechanism is fully supported by both the measured kinetic energy distributions and anisotropies of the angular distributions. Interestingly, the kinetic energy of the released Cl atom is sensitively modified by accounting for spin-orbit coupling. Given the atmospheric importance of CF3COCl, we discuss the consequences of our findings for atmospheric photochemistry.

10.
J Phys Chem Lett ; 13(17): 3781-3788, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35446589

RESUMO

The uptake of molecules on nanometer-size clusters of polyaromatic hydrocarbons (PAHs) is important for the condensation of water on PAH aerosols in the atmosphere and for ice mantle growth on nanoparticles in the interstellar medium. We generate benzene clusters BzN of mean size N̅ ≈ 300 (radius R̅ ≈ 2.2 Å) as a model system for the PAH nanoparticles. Using molecular beams and mass spectrometry detection, we investigate the uptake of water, methanol, and ethanol by these clusters. All picked up molecules are highly mobile on BzN and generate clusters within <3 ms. The relative uptakes for the different investigated molecules can be directly compared and quantified. Water molecules exhibit the lowest relative pickup probability that is ∼30% lower than those for methanol and ethanol, which are approximately the same.

11.
J Phys Chem Lett ; 10(9): 2024-2030, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30964299

RESUMO

Plasma membranes of living cells are compartmentalized into small submicroscopic structures (nanodomains) having potentially relevant biological functions. Despite this, structural features of these nanodomains remain elusive, primarily due to the difficulties in characterizing such small dynamic entities. It is unclear whether nanodomains found in the upper bilayer leaflet are transversally registered with those found in the lower leaflet. Experiments performed on larger microscopic domains indicate that the coupling between the leaflets is strong, forcing the domains to be in perfect registration, but can the same thing be said about the biologically more relevant nanodomains? This work provides experimental evidence that even small nanodomains of variable sizes between 10 and 160 nm are interleaflet coupled. Importantly, the alternative scenarios of partially registered, independent, or antiregistered nanodomains could be excluded.

12.
J Phys Chem B ; 122(38): 8834-8845, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30179014

RESUMO

Chlorophyll (Chl) triplet states generated in photosynthetic light-harvesting complexes (LHCs) can be quenched by carotenoids to prevent the formation of reactive singlet oxygen. Although this quenching occurs with an efficiency close to 100% at physiological temperatures, the Chl triplets are often observed at low temperatures. This might be due to the intrinsic temperature dependence of the Dexter mechanism of excitation energy transfer, which governs triplet quenching, or by temperature-induced conformational changes. Here, we report about the temperature dependence of Chl triplet quenching in two LHCs. We show that both the effects contribute significantly. In LHC II of higher plants, the core Chls are quenched with a high efficiency independent of temperature. A different subpopulation of Chls, which increases with lowering temperature, is not quenched at all. This is probably caused by the conformational changes which detach these Chls from the energy-transfer chain. In a membrane-intrinsic LHC of dinoflagellates, similarly two subpopulations of Chls were observed. In addition, another part of Chl triplets is quenched by carotenoids with a rate which decreases with temperature. This allowed us to study the temperature dependence of Dexter energy transfer. Finally, a part of Chls was quenched by triplet-triplet annihilation, a phenomenon which was not observed for LHCs before.


Assuntos
Clorofila A/química , Complexos de Proteínas Captadores de Luz/química , Carotenoides/química , Carotenoides/efeitos da radiação , Clorofila/química , Clorofila/efeitos da radiação , Clorofila A/efeitos da radiação , Temperatura Baixa , Dinoflagellida/química , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Spinacia oleracea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA