Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Behav Res Methods ; 56(2): 934-951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36894759

RESUMO

The spatial Stroop task measures the ability to resolve interference between relevant and irrelevant spatial information. We recently proposed a four-choice spatial Stroop task that ensures methodological advantages over the original color-word verbal Stroop task, requiring participants to indicate the direction of an arrow while ignoring its position in one of the screen corners. However, its peripheral spatial arrangement might represent a methodological weakness and could introduce experimental confounds. Thus, aiming at improving our "Peripheral" spatial Stroop, we designed and made available five novel spatial Stroop tasks (Perifoveal, Navon, Figure-Ground, Flanker, and Saliency), wherein the stimuli appeared at the center of the screen. In a within-subjects online study, we compared the six versions to identify which task produced the largest but also the most reliable and robust Stroop effect. Indeed, although internal reliability is frequently overlooked, its estimate is fundamental, also in light of the recently proposed reliability paradox. Data analyses were performed using both the classical general linear model analytical approach and two multilevel modelling approaches (linear mixed models and random coefficient analysis), which specifically served for more accurately estimating the Stroop effect by explaining intra-subject, trial-by-trial variability. We then assessed our results based on their robustness to such analytic flexibility. Overall, our results indicate that the Perifoveal spatial Stroop is the best alternative task for its statistical properties and methodological advantages. Interestingly, our results also indicate that the Peripheral and Perifoveal Stroop effects were not only the largest, but also those with highest and most robust internal reliability.


Assuntos
Atenção , Humanos , Teste de Stroop , Tempo de Reação , Reprodutibilidade dos Testes
2.
Exp Brain Res ; 241(8): 2179-2190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477666

RESUMO

Emotional facial expressions provide cues for social interactions and emotional events can distort our sense of time. The present study investigates the effect of facial emotional stimuli of anger and sadness on time perception. Moreover, to investigate the causal role of the orbitofrontal cortex (OFC) in emotional recognition, we employed transcranial random noise stimulation (tRNS) over OFC and tested the effect on participants' emotional recognition as well as on time processing. Participants performed a timing task in which they were asked to categorize as "short" or "long" temporal intervals marked by images of people expressing anger, sad or neutral emotional facial expressions. In addition, they were asked to judge if the image presented was of a person expressing anger or sadness. The visual stimuli were facial emotional stimuli indicating anger or sadness with different degrees of intensity at high (80%), medium (60%) and low (40%) intensity, along with neutral emotional face stimuli. In the emotional recognition task, results showed that participants were faster and more accurate when emotional intensity was higher. Moreover, tRNS over OFC interfered with emotion recognition, which is in line with its proposed role in emotion recognition. In the timing task, participants overestimated the duration of angry facial expressions, although neither emotional intensity not OFC stimulation significantly modulated this effect. Conversely, as the emotional intensity increased, participants exhibited a greater tendency to overestimate the duration of sad faces in the sham condition. However, this tendency disappeared with tRNS. Taken together, our results are partially consistent with previous findings showing an overestimation effect of emotionally arousing stimuli, revealing the involvement of OFC in emotional distortions of time, which needs further investigation.


Assuntos
Percepção do Tempo , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Emoções/fisiologia , Ira/fisiologia , Sinais (Psicologia) , Expressão Facial
3.
Exp Brain Res ; 241(7): 1919-1930, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37354350

RESUMO

Many cognitive processes, ranging from perception to action, depend on the ability to predict the timing of forthcoming events. Yet, how the brain uses predictive models in the temporal domain is still an unsolved question. In previous work, we began to explore the neural correlates of temporal predictions by using a computational approach in which an ideal Bayesian observer learned the temporal probabilities of target onsets in a simple reaction time task. Because the task was specifically designed to disambiguate updating of predictive models and surprise, changes in temporal probabilities were explicitly cued. However, in the real world, we are usually incidentally exposed to changes in the statistics of the environment. Here, we thus aimed to further investigate the electroencephalographic (EEG) correlates of Bayesian belief updating and surprise associated with incidental learning of temporal probabilities. In line with our previous EEG study, results showed distinct P3-like modulations for updating and surprise. While surprise was indexed by an early fronto-central P3-like modulation, updating was associated with a later and more posterior P3 modulation. Moreover, updating was associated with a P2-like potential at centro-parietal electrodes, likely capturing integration processes between prior beliefs and likelihood of the observed event. These findings support previous evidence of trial-by-trial variability of P3 amplitudes as an index of dissociable inferential processes. Coupled with our previous findings, the present study strongly bolsters the view of the P3 as a key brain signature of temporal Bayesian inference. Data and scripts are shared on OSF: osf.io/sdy8j/.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Teorema de Bayes , Mapeamento Encefálico , Tempo de Reação
4.
Behav Res Methods ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620747

RESUMO

The Stroop task is a seminal paradigm in experimental psychology, so much that various variants of the classical color-word version have been proposed. Here we offer a methodological review of them to emphasize the importance of designing methodologically rigorous Stroop tasks. This is not an end by itself, but it is fundamental to achieve adequate measurement validity, which is currently hindered by methodological heterogeneity and limitations. Among the several Stroop task variants in the literature, our methodological overview shows that the spatial Stroop task is not only a potentially methodologically adequate variant, which can thus assure measuring the Stroop effect with the required validity, but it might even allow researchers to overcome some of the methodological limitations of the classical paradigm due to its use of verbal stimuli. We thus focused on the spatial Stroop tasks in the literature to verify whether they really exploit such inherent potentiality. However, we show that this was generally not the case because only a few of them (1) are purely spatial, (2) ensure both all the three types of conflicts/facilitations (at the stimulus, response, and task levels) and the dimensional overlaps considered fundamental for yielding a complete Stroop effect according to the multiple loci account and Kornblum's theory, respectively, and (3) controlled for low-level binding and priming effects that could bias the estimated Stroop effect. Based on these methodological considerations, we present some examples of spatial Stroop tasks that, in our view, satisfy such requirements and, thus, ensure producing complete Stroop effects.

5.
Neuroimage ; 231: 117867, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592246

RESUMO

The brain predicts the timing of forthcoming events to optimize responses to them. Temporal predictions have been formalized in terms of the hazard function, which integrates prior beliefs on the likely timing of stimulus occurrence with information conveyed by the passage of time. However, how the human brain updates prior temporal beliefs is still elusive. Here we investigated electroencephalographic (EEG) signatures associated with Bayes-optimal updating of temporal beliefs. Given that updating usually occurs in response to surprising events, we sought to disentangle EEG correlates of updating from those associated with surprise. Twenty-six participants performed a temporal foreperiod task, which comprised a subset of surprising events not eliciting updating. EEG data were analyzed through a regression-based massive approach in the electrode and source space. Distinct late positive, centro-parietally distributed, event-related potentials (ERPs) were associated with surprise and belief updating in the electrode space. While surprise modulated the commonly observed P3b, updating was associated with a later and more sustained P3b-like waveform deflection. Results from source analyses revealed that neural encoding of surprise comprises neural activity in the cingulo-opercular network (CON) and parietal regions. These data provide evidence that temporal predictions are computed in a Bayesian manner, and that this is reflected in P3 modulations, akin to other cognitive domains. Overall, our study revealed that analyzing P3 modulations provides an important window into the Bayesian brain. Data and scripts are shared on OSF: https://osf.io/ckqa5/.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Adulto , Teorema de Bayes , Potenciais Evocados P300/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
6.
Behav Brain Sci ; 43: e151, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32616088

RESUMO

According to Gilead and colleagues, to be efficient abstraction requires a hierarchical organization of information into long-term memory. But, how and when are abstract representations consolidated into long-term memory and how are they integrated with pre-existing abstracta are questions not discussed by Gilead and colleagues. Here, we propose that these processes occur preferentially during offline periods such as sleep.


Assuntos
Memória , Sono , Encéfalo
7.
Behav Brain Sci ; 43: e138, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32616086

RESUMO

A crucial aspect of Gilead and colleagues' ontology is the dichotomy between tangible and intangible representations, but the latter remains rather ill-defined. We propose a fundamental role for interoceptive experience and the statistical distribution of entities in language, especially for intangible representations, that we believe Gilead and colleagues' ontology needs to incorporate.


Assuntos
Encéfalo , Emoções
8.
Neuroimage ; 202: 116097, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415885

RESUMO

The brain predicts the timing of forthcoming events to optimize processes in response to them. Temporal predictions are driven by both our prior expectations on the likely timing of stimulus occurrence and the information conveyed by the passage of time. Specifically, such predictions can be described in terms of the hazard function, that is, the conditional probability that an event will occur, given it has not yet occurred. Events violating expectations cause surprise and often induce updating of prior expectations. While it is well-known that the brain is able to track the temporal hazard of event occurrence, the question of how prior temporal expectations are updated is still unsettled. Here we combined a Bayesian computational approach with brain imaging to map updating of temporal expectations in the human brain. Moreover, since updating is usually highly correlated with surprise, participants performed a task that allowed partially differentiating between the two processes. Results showed that updating and surprise differently modulated activity in areas belonging to two critical networks for cognitive control, the fronto-parietal (FPN) and the cingulo-opercular network (CON). Overall, these data provide a first computational characterization of the neural correlates associated with updating and surprise related to temporal expectation.


Assuntos
Antecipação Psicológica/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Motivação/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo , Adulto Jovem
9.
J Exp Psychol Gen ; 153(6): 1644-1670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38661633

RESUMO

Cognitive control has been theorized operating through two distinct mechanisms, proactive and reactive control, as posited by the dual mechanism of control model. Despite its potential to explain cognitive control variability, the supporting evidence for this model remains inconclusive. Prior studies frequently employed the Stroop task to assess this model, manipulating the proportion congruency (PC) at the list-wide and/or item-specific levels to target proactive and reactive control, respectively. However, these manipulations have been questioned as they may invoke low-level associative learning instead of control-driven mechanisms. Although solutions have been proposed to address these concerns, they still have limitations and impracticalities. In pursuit of a clearer understanding of this issue, we manipulated proactive and reactive control simultaneously to more directly investigate their separability. We conducted two experiments using a peripheral and a perifoveal spatial Stroop task version, respectively, and we adopted state-of-the-art methodologies, leveraging trial-level multilevel modeling analytical approaches, to effectively estimate the Stroop effect and its control-related modulations while controlling for confounding factors. Notably, we manipulated both list-wide and item-specific PCs at the trial level, allowing for a fine-grained analysis. Our results provide compelling evidence for the existence of a list-wide, PC-dependent proactive control mechanism, influencing Stroop performance independently of reactive control and confounding factors. Additionally, an item-specific PC-dependent reactive control effect was found to influence Stroop performance only in interaction with proactive control. These findings contribute to a better understanding of the interplay between proactive and reactive control mechanisms, shedding light on the intricate nature of cognitive control. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Função Executiva , Teste de Stroop , Humanos , Masculino , Feminino , Adulto , Função Executiva/fisiologia , Adulto Jovem , Tempo de Reação/fisiologia
10.
J Neurosci Methods ; 401: 109991, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884082

RESUMO

BACKGROUND: Mixed-effects models are the current standard for the analysis of behavioral studies in psycholinguistics and related fields, given their ability to simultaneously model crossed random effects for subjects and items. However, they are hardly applied in neuroimaging and psychophysiology, where the use of mass univariate analyses in combination with permutation testing would be too computationally demanding to be practicable with mixed models. NEW METHOD: Here, we propose and validate an analytical strategy that enables the use of linear mixed models (LMM) with crossed random intercepts in mass univariate analyses of EEG data (lmeEEG). It avoids the unfeasible computational costs that would arise from massive permutation testing with LMM using a simple solution: removing random-effects contributions from EEG data and performing mass univariate linear analysis and permutations on the obtained marginal EEG. RESULTS: lmeEEG showed excellent performance properties in terms of power and false positive rate. COMPARISON WITH EXISTING METHODS: lmeEEG overcomes the computational costs of standard available approaches (our method was indeed more than 300 times faster). CONCLUSIONS: lmeEEG allows researchers to use mixed models with EEG mass univariate analyses. Thanks to the possibility offered by the method described here, we anticipate that LMM will become increasingly important in neuroscience. Data and codes are available at osf.io/kw87a. The codes and a tutorial are also available at github.com/antovis86/lmeEEG.


Assuntos
Psicolinguística , Projetos de Pesquisa , Humanos , Modelos Lineares , Eletroencefalografia
11.
PLoS One ; 18(11): e0294957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011212

RESUMO

Evidence is discordant regarding how emotional processing and cognitive control interact to shape behavior. This observational study sought to examine this interaction by looking at the distinction between proactive and reactive modes of control and how they relate to emotional processing. Seventy-four healthy participants performed an emotional priming Stroop task. On each trial, target stimuli of a spatial Stroop task were preceded by sad or neutral facial expressions, providing two emotional conditions. To manipulate the requirement of both proactive and reactive control, the proportion of congruent trials (PC) was varied at the list-wide (LWPC) and item-specific (ISPC) levels, respectively. We found that sad priming led to behavioral costs only in trials with low proactive and reactive cognitive control demands. Our findings suggest that emotional processing affects cognitive processes other than cognitive control in the Stroop task. Moreover, both proactive and reactive control modes seem effective in overcoming emotional interference of priming stimuli.


Assuntos
Emoções , Transtornos do Humor , Humanos , Teste de Stroop , Expressão Facial , Cognição , Tempo de Reação
12.
PLoS One ; 17(3): e0264999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294473

RESUMO

This study aimed to test two common explanations for the general finding of age-related changes in the performance of timing tasks within the millisecond-to-second range intervals. The first explanation is that older adults have a real difficulty in temporal processing as compared to younger adults. The second explanation is that older adults perform poorly on timing tasks because of their reduced cognitive control functions. These explanations have been mostly contrasted in explicit timing tasks that overtly require participants to process interval durations. Fewer studies have instead focused on implicit timing tasks, where no explicit instructions to process time are provided. Moreover, the investigation of both explicit and implicit timing in older adults has been restricted so far to healthy older participants. Here, a large sample (N = 85) comprising not only healthy but also pathological older adults completed explicit (time bisection) and implicit (foreperiod) timing tasks within a single session. Participants' age and cognitive decline, measured with the Mini-Mental State Examination (MMSE), were used as continuous variables to explain performance on explicit and implicit timing tasks. Results for the explicit timing task showed a flatter psychometric curve with increasing age or decreasing MMSE scores, pointing to a deficit at the level of cognitive control functions rather than of temporal processing. By contrast, for the implicit timing task, a decrease in the MMSE scores was associated with a reduced foreperiod effect, an index of implicit time processing. Overall, these findings extend previous studies on explicit and implicit timing in healthy aged samples by dissociating between age and cognitive decline (in the normal-to-pathological continuum) in older adults.


Assuntos
Disfunção Cognitiva , Percepção do Tempo , Idoso , Humanos
13.
Brain Struct Funct ; 227(2): 655-672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34106305

RESUMO

Homotopic functional connectivity reflects the degree of synchrony in spontaneous activity between homologous voxels in the two hemispheres. Previous studies have associated increased brain homotopy and decreased white matter integrity with performance decrements on different cognitive tasks across the life-span. Here, we correlated functional homotopy, both at the whole-brain level and specifically in fronto-parietal network nodes, with task-switching performance in young adults. Cue-to-target intervals (CTI: 300 vs. 1200 ms) were manipulated on a trial-by-trial basis to modulate cognitive demands and strategic control. We found that mixing costs, a measure of task-set maintenance and monitoring, were significantly correlated to homotopy in different nodes of the fronto-parietal network depending on CTI. In particular, mixing costs for short CTI trials were smaller with lower homotopy in the superior frontal gyrus, whereas mixing costs for long CTI trials were smaller with lower homotopy in the supramarginal gyrus. These results were specific to the fronto-parietal network, as similar voxel-wise analyses within a control language network did not yield significant correlations with behavior. These findings extend previous literature on the relationship between homotopy and cognitive performance to task-switching, and show a dissociable role of homotopy in different fronto-parietal nodes depending on task demands.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal , Adulto Jovem
14.
Neuropsychologia ; 169: 108187, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218790

RESUMO

Though the assessment of cognitive functions is proven to be a reliable prognostic indicator in patients with brain tumors, some of these functions, such as cognitive control, are still rarely investigated. The objective of this study was to examine proactive and reactive control functions in patients with focal brain tumors and to identify lesioned brain areas more at "risk" for developing impairment of these functions. To this end, a group of twenty-two patients, candidate to surgery, were tested with an AX-CPT task and a Stroop task, along with a clinical neuropsychological assessment, and their performance was compared to that of a well-matched healthy control group. Although overall accuracy and response times were similar for patients and control groups, the patient group failed more on the BX trials of the AX-CPT task and on the incongruent trials of the Stroop task, specifically. Behavioral results were associated with the damaged brain areas, mostly distributed in right frontal regions, by means of a lesion-symptom mapping multivariate approach. This analysis showed that a white matter cluster in the right prefrontal area was associated with lower d'-context values on the AX-CPT, which reflected the fact that these patients rely more on later information (reactive processes) to respond to unexpected and conflicting stimuli, than on earlier contextual cues (proactive processes). Taken together, these results suggest that patients with brain tumors present an imbalance between proactive and reactive control strategies in high interfering conditions, in association with right prefrontal white matter lesions.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Mapeamento Encefálico , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Cognição/fisiologia , Humanos , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia
15.
Sci Rep ; 10(1): 9859, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555267

RESUMO

Task switching is often considered for evaluating limitations of cognitive flexibility. Switch costs are behavioural indices of limited cognitive flexibility, and switch costs may be decomposable into stimulus- and response-related fractions, as conjectured by the domain hypothesis of cognitive flexibility. According to the domain hypothesis, there exist separable stimulus- and response-related neural networks for cognitive flexibility, which should be discernible as distinct event-related potentials (ERPs). The present card-matching study allowed isolating stimulus- and response-related switch costs, while measuring ERPs evoked by task cues and target stimuli with a focus on the target-locked N2/P3 complex. Behavioural data revealed that both stimulus-task and response-task bindings contribute to switch costs. Cue-locked ERPs yielded larger anterior negativity/posterior positivity in response to switch cues compared to repeat cues. Target-locked ERPs revealed separable ERP correlates of stimulus- and response-related switch costs. P3 waveforms with fronto-central scalp distributions emerged as a corollary of stimulus-related switch costs. Fronto-centrally distributed N2 waveforms occurred when stimulus-task and response-task bindings contributed jointly to switch costs. The reported N2/P3 ERP data are commensurate with the domain hypothesis according to which there exist separable stimulus- and response-related neural networks for cognitive flexibility.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Potenciais Evocados P300 , Comportamento/fisiologia , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
16.
Front Psychol ; 9: 145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497392

RESUMO

Visual search tasks have often been used to investigate how cognitive processes change with expertise. Several studies have shown visual experts' advantages in detecting objects related to their expertise. Here, we tried to extend these findings by investigating whether professional search experience could boost top-down monitoring processes involved in visual search, independently of advantages specific to objects of expertise. To this aim, we recruited a group of quality-control workers employed in citrus farms. Given the specific features of this type of job, we expected that the extensive employment of monitoring mechanisms during orange selection could enhance these mechanisms even in search situations in which orange-related expertise is not suitable. To test this hypothesis, we compared performance of our experimental group and of a well-matched control group on a computerized visual search task. In one block the target was an orange (expertise target) while in the other block the target was a Smurfette doll (neutral target). The a priori hypothesis was to find an advantage for quality-controllers in those situations in which monitoring was especially involved, that is, when deciding the presence/absence of the target required a more extensive inspection of the search array. Results were consistent with our hypothesis. Quality-controllers were faster in those conditions that extensively required monitoring processes, specifically, the Smurfette-present and both target-absent conditions. No differences emerged in the orange-present condition, which resulted to mainly rely on bottom-up processes. These results suggest that top-down processes in visual search can be enhanced through immersive real-life experience beyond visual expertise advantages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA