Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 4866, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849373

RESUMO

Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Colágeno Tipo I , Mecanotransdução Celular , Invasividade Neoplásica , Fatores de Transcrição , Proteínas de Sinalização YAP , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Regulação Neoplásica da Expressão Gênica , Organoides/metabolismo , Organoides/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo
2.
NPJ Breast Cancer ; 10(1): 31, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658604

RESUMO

Research on metastatic cancer has been hampered by limited sample availability. Here we present the breast cancer post-mortem tissue donation program UPTIDER and show how it enabled sampling of a median of 31 (range: 5-90) metastases and 5-8 liquids per patient from its first 20 patients. In a dedicated experiment, we show the mild impact of increasing time after death on RNA quality, transcriptional profiles and immunohistochemical staining in tumor tissue samples. We show that this impact can be counteracted by organ cooling. We successfully generated ex vivo models from tissue and liquid biopsies from distinct histological subtypes of breast cancer. We anticipate these and future findings of UPTIDER to elucidate mechanisms of disease progression and treatment resistance and to provide tools for the exploration of precision medicine strategies in the metastatic setting.

3.
Oncogene ; 41(17): 2458-2469, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35292774

RESUMO

The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Colágeno , Matriz Extracelular/patologia , Feminino , Humanos , Camundongos , Invasividade Neoplásica/patologia , Microambiente Tumoral
4.
Oncogene ; 41(21): 2932-2944, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35437308

RESUMO

Invasive lobular breast carcinoma (ILC) is characterized by proliferative indolence and long-term latency relapses. This study aimed to identify how disseminating ILC cells control the balance between quiescence and cell cycle re-entry. In the absence of anchorage, ILC cells undergo a sustained cell cycle arrest in G0/G1 while maintaining viability. From the genes that are upregulated in anchorage independent ILC cells, we selected Inhibitor of DNA binding 2 (Id2), a mediator of cell cycle progression. Using loss-of-function experiments, we demonstrate that Id2 is essential for anchorage independent survival (anoikis resistance) in vitro and lung colonization in mice. Importantly, we find that under anchorage independent conditions, E-cadherin loss promotes expression of Id2 in multiple mouse and (organotypic) human models of ILC, an event that is caused by a direct p120-catenin/Kaiso-dependent transcriptional de-repression of the canonical Kaiso binding sequence TCCTGCNA. Conversely, stable inducible restoration of E-cadherin expression in the ILC cell line SUM44PE inhibits Id2 expression and anoikis resistance. We show evidence that Id2 accumulates in the cytosol, where it induces a sustained and CDK4/6-dependent G0/G1 cell cycle arrest through interaction with hypo-phosphorylated Rb. Finally, we find that Id2 is indeed enriched in ILC when compared to other breast cancers, and confirm cytosolic Id2 protein expression in primary ILC samples. In sum, we have linked mutational inactivation of E-cadherin to direct inhibition of cell cycle progression. Our work indicates that loss of E-cadherin and subsequent expression of Id2 drive indolence and dissemination of ILC. As such, E-cadherin and Id2 are promising candidates to stratify low and intermediate grade invasive breast cancers for the use of clinical cell cycle intervention drugs.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Animais , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Ciclo Celular/genética , Feminino , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Camundongos , Invasividade Neoplásica , Recidiva Local de Neoplasia
6.
Eur J Cell Biol ; 95(11): 465-474, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27402209

RESUMO

Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics and cell-matrix interactions.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animais , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patologia , Bases de Dados Genéticas , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética
7.
Oncotarget ; 6(11): 8760-76, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25797249

RESUMO

Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.


Assuntos
Metástase Neoplásica/genética , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/citologia , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Neoplasias da Medula Óssea/secundário , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Crista Neural/citologia , Neuroblastoma/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia , Transcrição Gênica , Microambiente Tumoral
8.
Eur J Cell Biol ; 93(10-12): 455-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073440

RESUMO

Transient receptor potential (TRP) cation channels represent a large and diverse family of ion channels that act as important transducers of sensory information. The Melastatin subfamily member TRPM7 has garnered much interest due to its functional kinase domain; a unique feature among ion channels. TRPM7 primarily conducts Ca(2+) and Mg(2+) and its activity is regulated by intracellular Mg(2+), phospholipase C-mediated signaling and mechanical cues. A growing number of studies emphasize a regulatory role for TRPM7 in proliferation and cell survival as well as cytoskeletal reorganization during adhesion and migration. Knockout approaches in animal models have revealed that TRPM7 significantly contributes to embryonic development and organogenesis. In addition, a role for TRPM7 to the pathophysiology of several diseases has become evident in recent years. Here, we discuss how recent insights have contributed to our understanding of TRPM7 function and regulation in health and disease.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Proliferação de Células , Sobrevivência Celular , Citoesqueleto/fisiologia , Desenvolvimento Embrionário , Humanos , Ativação do Canal Iônico , Isquemia/metabolismo , Magnésio/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
9.
Cell Calcium ; 54(6): 404-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24176224

RESUMO

Cell migration depends on the dynamic formation and turnover of cell adhesions and is tightly controlled by actomyosin contractility and local Ca2+ signals. The divalent cation channel TRPM7 (Transient Receptor Potential cation channel, subfamily Melastatin, member 7) has recently received much attention as a regulator of cell adhesion, migration and (localized) Ca2+ signaling. Overexpression and knockdown of TRPM7 affects actomyosin contractility and the formation of cell adhesions such as invadosomes and focal adhesions, but the role of TRPM7-mediated Ca2+ signals herein is currently not understood. Using Total Internal Reflection Fluorescence (TIRF) Ca2+ fluorometry and a novel automated analysis routine we have addressed the role of Ca2+ in the control of invadosome dynamics in N1E-115 mouse neuroblastoma cells. We find that TRPM7 promotes the formation of highly repetitive and localized Ca2+ microdomains or "Ca2+ sparking hotspots" at the ventral plasma membrane. Ca2+ sparking appears strictly dependent on extracellular Ca2+ and is abolished by TRPM7 channel inhibitors such as waixenicin-A. TRPM7 inhibition also induces invadosome dissolution. However, invadosome formation is (functionally and spatially) dissociated from TRPM7-mediated Ca2+ sparks. Rather, our data indicate that TRPM7 affects actomyosin contractility and invadosome formation independent of Ca2+ influx.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Canais de Cátion TRPM/metabolismo , Acetatos/farmacologia , Actomiosina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Diterpenos/farmacologia , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
10.
Cancer Res ; 72(16): 4250-61, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22871386

RESUMO

TRPM7 encodes a Ca2+-permeable nonselective cation channel with kinase activity. TRPM7 has been implicated in control of cell adhesion and migration, but whether TRPM7 activity contributes to cancer progression has not been established. Here we report that high levels of TRPM7 expression independently predict poor outcome in breast cancer patients and that it is functionally required for metastasis formation in a mouse xenograft model of human breast cancer. Mechanistic investigation revealed that TRPM7 regulated myosin II-based cellular tension, thereby modifying focal adhesion number, cell-cell adhesion and polarized cell movement. Our findings therefore suggest that TRPM7 is part of a mechanosensory complex adopted by cancer cells to drive metastasis formation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canais de Cátion TRPM/biossíntese , Animais , Neoplasias da Mama/genética , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Estadiamento de Neoplasias , Proteínas Serina-Treonina Quinases , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Estrogênio/biossíntese , Receptores de Estrogênio/metabolismo , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA