RESUMO
Central nervous system (CNS) tumors are the leading cause of cancer-related death in children. Typical therapy for CNS tumors in children involves a combination of surgery, radiation, and chemotherapy. While upfront therapy is effective for many high-grade tumors, therapy at the time of relapse remains limited. Furthermore, for diffuse intrinsic pontine glioma (DIPG) and diffuse midline glioma (DMG), there are currently no curative therapies. Chimeric antigen receptor T (CAR T) cell therapy is a promising novel treatment avenue for these tumors. Here, we review the preclinical evidence for CAR T cell use in pediatric brain tumors, the preliminary clinical experience of CNS CAR T cell trials, toxicity associated with systemic and locoregional CAR T cell therapy for CNS tumors, challenges in disease response evaluation with CAR T cell therapy, and the knowledge gained from correlative biologic studies from these trials in the pediatric and young adult population.
RESUMO
PURPOSE OF REVIEW: Correlative studies should leverage clinical trial frameworks to conduct biospecimen analyses that provide insight into the bioactivity of the intervention and facilitate iteration toward future trials that further improve patient outcomes. In pediatric cellular immunotherapy trials, correlative studies enable deeper understanding of T cell mobilization, durability of immune activation, patterns of toxicity, and early detection of treatment response. Here, we review the correlative science in adoptive cell therapy (ACT) for childhood central nervous system (CNS) tumors, with a focus on existing chimeric antigen receptor (CAR) and T cell receptor (TCR)-expressing T cell therapies. RECENT FINDINGS: We highlight long-standing and more recently understood challenges for effective alignment of correlative data and offer practical considerations for current and future approaches to multi-omic analysis of serial tumor, serum, and cerebrospinal fluid (CSF) biospecimens. We highlight the preliminary success in collecting serial cytokine and proteomics from patients with CNS tumors on ACT clinical trials.
Assuntos
Neoplasias do Sistema Nervoso Central , Receptores de Antígenos Quiméricos , Humanos , Criança , Imunoterapia Adotiva , Neoplasias do Sistema Nervoso Central/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos TRESUMO
Background Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis. Purpose To develop machine learning strategies that identify the four clinically significant MB molecular subgroups. Materials and Methods In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed-one that first identifies non-wingless (WNT) and non-sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model accuracy score was compared with the no-information rate using the Wald test. Results The study cohort comprised 263 patients (mean age ± SD at diagnosis, 87 months ± 60; 166 boys). A two-stage classifier outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features were most contributory across the molecular subgroups. Conclusion An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric medulloblastoma subgroups. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chaudhary and Bapuraj in this issue.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Adolescente , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/genética , Criança , Pré-Escolar , Feminino , Proteínas Hedgehog/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/genética , Estudos RetrospectivosRESUMO
Pineal anlage tumor is a rare pediatric tumor with clinical and histological features overlapping with pineoblastoma. Two patients with pineal anlage tumor, a 13-month-old female and an 11-month-old male, underwent subtotal resection, high-dose chemotherapy with autologous stem cell rescue, and radiation. Neither had tumor progression 50 months after diagnosis. The tumors underwent next-generation sequencing on a panel of 340 genes. Chromosomal copy gains and losses were present and differed between the tumors. No mutations or amplifications, including none specific to pineoblastoma, were identified.
Assuntos
Neoplasias Encefálicas , Glândula Pineal , Pinealoma , Neoplasias Supratentoriais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Criança , Aberrações Cromossômicas , Feminino , Humanos , Lactente , Masculino , Mutação , Glândula Pineal/patologia , Pinealoma/genética , Pinealoma/patologia , Pinealoma/terapia , Neoplasias Supratentoriais/patologiaRESUMO
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for a global pandemic that can cause severe infections in children, especially those with comorbid conditions. Here, we report a case of a child with a newly diagnosed medulloblastoma, Fanconi Anemia, and SARS-CoV-2 infection. Through multidisciplinary care coordination and meticulous planning, we were able to safely initiate this patient's oncology care and implement a long-term model to address the patient's care. This approach could be replicated with any newly diagnosed pediatric patient that requires monitoring for signs of COVID-19 with concurrent oncology care.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , COVID-19/complicações , Anemia de Fanconi/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , SARS-CoV-2/isolamento & purificação , COVID-19/transmissão , COVID-19/virologia , Pré-Escolar , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/virologia , Feminino , Humanos , Meduloblastoma/diagnóstico , Meduloblastoma/virologia , PrognósticoRESUMO
Extramedullary hematopoiesis (EMH) is hematopoiesis occurring outside of the bone marrow. It has been reported to develop in abdominal organs or lymph nodes after chemotherapy. Here, the authors describe a patient with a localized central nervous system embryonal tumor who, during intensive chemotherapy, developed dural nodules. Biopsy revealed these nodules to be EMH. Without a pathologic diagnosis, this may have been considered disease progression, altering the patient's treatment plan. This report intends to serve as a reminder that EMH should be included in the differential diagnosis of suspicious lesions and highlights the importance of their biopsy because of potential management implications.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Dura-Máter/patologia , Hematopoese Extramedular , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Pré-Escolar , Progressão da Doença , Dura-Máter/efeitos dos fármacos , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/patologia , PrognósticoRESUMO
INTRODUCTION: Beyond focal radiation, there is no consensus standard therapy for pediatric high-grade glioma (pHGG) and outcomes remain dismal. We describe the largest molecularly-characterized cohort of children with pHGG treated with a 3-drug maintenance regimen of temozolomide, irinotecan, and bevacizumab (TIB) following radiation. METHODS: We retrospectively reviewed 36 pediatric patients treated with TIB at Seattle Children's Hospital from 2009 to 2018 and analyzed survival using the Kaplan-Meier method. Molecular profiling was performed by targeted DNA sequencing and toxicities, steroid use, and palliative care utilization were evaluated. RESULTS: Median age at diagnosis was 10.9 years (18 months-18 years). Genetic alterations were detected in 26 genes and aligned with recognized molecular subgroups including H3 K27M-mutant (12), H3F3A G34-mutant (2), IDH-mutant (4), and hypermutator profiles (4). Fifteen patients (42%) completed 12 planned cycles of maintenance. Side effects associated with chemotherapy delays or modifications included thrombocytopenia (28%) and nausea/vomiting (19%), with temozolomide dosing most frequently modified. Median event-free survival (EFS) and overall survival (OS) was 16.2 and 20.1 months, with shorter survival seen in DIPG (9.3 and 13.3 months, respectively). Survival at 1, 2, and 5 years was 80%, 10% and 0% for DIPG and 85%, 38%, and 16% for other pHGG. CONCLUSION: Our single-center experience demonstrates tolerability of this 3-drug regimen, with prolonged survival in DIPG compared to historical single-agent temozolomide. pHGG survival was comparable to analogous 3-drug regimens and superior to historical agents; however, cure was rare. Children with pHGG remain excellent candidates for the study of novel therapeutics combined with standard therapy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma/tratamento farmacológico , Adolescente , Bevacizumab/administração & dosagem , Neoplasias do Tronco Encefálico/patologia , Criança , Pré-Escolar , Glioma Pontino Intrínseco Difuso/patologia , Feminino , Seguimentos , Glioma/patologia , Humanos , Lactente , Irinotecano/administração & dosagem , Masculino , Gradação de Tumores , Estudos Retrospectivos , Taxa de Sobrevida , Temozolomida/administração & dosagemRESUMO
PURPOSE: Intracranial growing teratoma syndrome (iGTS) is a rare phenomenon of paradoxical growth of a germ cell tumor (GCT) during treatment despite normalization of tumor markers. We sought to evaluate the frequency, clinical characteristics and outcome of iGTS in Western countries. METHODS: Pediatric patients from 22 North American and Australian institutions diagnosed with iGTS between 2000 and 2017 were retrospectively evaluated. RESULTS: From a total of 777 cases of central nervous system (CNS) GCT, 39 cases of iGTS were identified for an overall frequency of 5%. Pineal region was a more frequent location for iGTS as compared to cases of GCT without iGTS (p < 0.00001). In patients with an initial tissue diagnosis of GCT, immature teratoma was present in 50%. Serum AFP or ßhCG was detectable in 87% of patients (median values 66 ng/mL and 44 IU/L, respectively). iGTS occurred at a median of 2 months (range 0.5-32) from diagnosis, in the majority of patients. All patients underwent surgical resection, leading to gross total resection in 79%. Following surgery, all patients resumed adjuvant therapy or post treatment follow-up for GCT. At a median follow-up of 5.3 years (range 0.2-11.8), 37 (95%) of patients are alive, including 5 with stable residual mass. CONCLUSION: iGTS occurs in 5% of patients with GCT in Western countries. Tumors of the pineal region and GCT containing immature teratoma appear to be associated with a higher risk of developing iGTS. Complete surgical resection is the mainstay of treatment. Overall survival of patients developing iGTS remains favorable.
Assuntos
Neoplasias Embrionárias de Células Germinativas/epidemiologia , Teratoma/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Neoplasias Embrionárias de Células Germinativas/complicações , Pinealoma/complicações , Pinealoma/epidemiologia , Estudos Retrospectivos , Teratoma/complicações , Resultado do Tratamento , Adulto JovemRESUMO
Diffuse intrinsic pontine glioma (DIPG) is a universally fatal pediatric brainstem tumor affecting approximately 300 children in the US annually. Median survival is less than 1 year, and radiation therapy has been the mainstay of treatment for decades. Recent advances in the biological understanding of the disease have identified the H3K27M mutation in nearly 80% of DIPGs, leading to the 2016 WHO classification of diffuse midline glioma H3K27M-mutant, a grade IV brainstem tumor. Developments in epigenetic targeting of transcriptional tendencies have yielded potential molecular targets for clinical trials. Chimeric antigen receptor T cell therapy has also shown preclinical promise. Recent clinical studies, including prospective trials, have demonstrated the safety and feasibility of pediatric brainstem biopsy in the setting of DIPG and other brainstem tumors. Given developments in the ability to analyze DIPG tumor tissue to deepen biological understanding of this disease and develop new therapies for treatment, together with the increased safety of stereotactic brainstem biopsy, the authors present a case for offering biopsy to all children with suspected DIPG. They also present their standard operative techniques for image-guided, frameless stereotactic biopsy.
Assuntos
Astrocitoma , Biópsia , Neoplasias do Tronco Encefálico , Padrão de Cuidado , Astrocitoma/patologia , Astrocitoma/cirurgia , Biópsia/métodos , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/cirurgia , Criança , Pré-Escolar , Epigenômica , Glioma/genética , Humanos , Biópsia Guiada por Imagem/métodos , Estudos ProspectivosRESUMO
Incontinentia pigmenti (IP) is a genetic disorder caused by mutations in IKBKG, leading to functional loss of nuclear factor kappa B (NF-ĸB). We report the case of a 6-month-old female child with IP who presented with unilateral nystagmus and was found to have a pilocytic astrocytoma with leptomeningeal spread. Enhanced understanding of the relationship between NF-ĸB, along with its upstream regulators, and tumorigenesis may shed light on whether a subset of patients with IP may be at increased risk for neoplasia.
Assuntos
Astrocitoma/epidemiologia , Incontinência Pigmentar/epidemiologia , Nistagmo Patológico/etiologia , Astrocitoma/complicações , Feminino , Humanos , Incontinência Pigmentar/complicações , Lactente , Carcinomatose Meníngea/complicações , Carcinomatose Meníngea/epidemiologiaRESUMO
PURPOSE OF REVIEW: Central nervous system tumors represent the most common solid tumors in children and are a leading cause of cancer-related fatalities in this age group. Here, we provide an update on insights gained through molecular profiling of the most common malignant childhood brain tumors. RECENT FINDINGS: Genomic profiling studies of medulloblastoma, ependymoma, and diffuse intrinsic pontine glioma (diffuse midline glioma, with H3-K27M mutation), have refined, if not redefined, the diagnostic classification and therapeutic stratification of patients with these tumors. They detail the substantial genetic heterogeneity across each disease type and, importantly, link genotypic information to clinical course. The most aggressive, treatment-resistant (and also treatment-sensitive) forms within each disease entity are identified, and their potentially actionable targets. SUMMARY: Molecularly based classification of pediatric brain tumors provides a critical framework for the more precise stratification and treatment of children with brain tumors.
Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Criança , Ependimoma/genética , Ependimoma/terapia , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Glioma/genética , Glioma/terapia , Humanos , Meduloblastoma/genética , Meduloblastoma/terapia , MutaçãoRESUMO
Treatment for intracranial germ cell tumors includes platinum-based chemotherapy and external beam radiation therapy, which are risk factors for hearing loss. In patients who experience significant sensorineural ototoxicity due to cochlear hair cell injury, dose reduction of chemotherapy may be necessary. This report describes an adolescent male, with excellent treatment response for an intracranial nongerminomatous germ cell tumor, who developed sensorineural hearing loss, which was central rather than cochlear in origin and unrelated to carboplatin. This patient highlights the need to carefully differentiate the type and etiology of sensorineural hearing loss in patients with brain tumors receiving ototoxic chemotherapy.
Assuntos
Neoplasias Encefálicas/complicações , Perda Auditiva Neurossensorial/etiologia , Neoplasias Embrionárias de Células Germinativas/complicações , Adolescente , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Diagnóstico Diferencial , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/radioterapiaRESUMO
Although reduced bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL) is well documented, the degree of demineralization and relation to age are not well described. This is a retrospective chart analysis of 58 patients consecutively treated for ALL without relapse, cranial irradiation, or transplantation. Bone mineral densities were measured by dual-energy x-ray absorptiometry and patients were divided by sex and age (≤5, 6 to 10, and >10 y) at diagnosis. Serial scans for 6 years after therapy were analyzed as Z-scores. Over 6 years after therapy, 93.1% of patients exhibited a decreased Z-score in at least 1 anatomic site. The difference in Z-score among the age cohorts was significant at both the lumbar spine and femoral neck. Patients older than 10 years at diagnosis had the lowest Z-scores: -2.78 and -2.87 for boys and -2.39 and -2.91 for girls at the lumbar spine and femoral neck, respectively. Children after ALL therapy exhibit a significant bone mineral deficit shortly after completion of therapy that persists for at least 6 years. The degree of bone demineralization can be followed up by a dual-energy x-ray absorptiometry scan and is most severe in patients older than 10 years at the initiation of therapy.
Assuntos
Densidade Óssea/efeitos dos fármacos , Densidade Óssea/efeitos da radiação , Osteoporose/epidemiologia , Osteoporose/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Absorciometria de Fóton , Antineoplásicos/efeitos adversos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Criança , Pré-Escolar , Irradiação Craniana/efeitos adversos , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lactente , Masculino , Estudos Retrospectivos , SobreviventesRESUMO
BACKGROUND: Ikaros, the product of IKZF1, is a regulator of lymphoid development and polymorphisms in the gene have been associated with the acute lymphoblastic leukemia (ALL). Additionally, IKZF1 deletions and mutations identify high-risk biological subsets of childhood ALL [Georgopoulos et al. Cell 1995;83(2):289-299; Mullighan et al. N Engl J Md 2009;360(5):470-480]. PROCEDURES: To discover the underlying pathways modulated by Ikaros we performed gene expression and gene ontology analysis in IKZF1 deleted primary B-ALL pediatric patient samples. To validate downstream targets we performed qPCR on individual patient samples. We also created IKZF1 knockdown B-ALL cell lines with over 50% reduction of Ikaros, mimicking haplosufficient Ikaros deletions, and again performed qPCR to investigate the downstream targets. Finally, to understand the association of Ikaros deletion with a poor prognosis we challenged our IKZF1 knockdown cell lines with chemotherapy and compared responses to IKZF1 wild-type controls. RESULTS: We report a specific gene expression signature of 735 up-regulated and 473 down-regulated genes in IKZF1 deleted primary B-ALL pediatric patient samples. Gene ontology studies revealed an up-regulation of genes associated with cell adhesion, cytoskeletal regulation, and motility in IKZF deleted patient samples. Validated up-regulated target genes in IKZF1 deleted patient samples included CTNND1 and PVRL2 (P = 0.0003 and P = 0.001), and RAB3IP and SPIB (P = 0.005 and P = 0.032) were down-regulated. In further studies in IKZF1 knockdown cell lines, apoptosis assays showed no significant chemoresistance. CONCLUSION: IKZF1 knockdown alone does not impart intrinsic chemotherapy resistance suggesting that the association with a poor prognosis may be due to additional lesions, microenvironmental interactions with the bone marrow niche, or other factors.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição Ikaros/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Western Blotting , Criança , Proteínas de Fusão bcr-abl/genética , Deleção de Genes , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TranscriptomaRESUMO
Although great strides have been made in the improvement of outcome for newly diagnosed pediatric acute lymphoblastic leukemia because of refinements in risk stratification and selective intensification of therapy, the prognosis for relapsed leukemia has lagged behind significantly. Understanding the underlying biological pathways responsible for drug resistance is essential to develop novel approaches for the prevention of recurrence and treatment of relapsed disease. High throughput genomic technologies have the potential to revolutionize cancer care in this era of personalized medicine. Using such advanced technologies, we and others have shown that a diverse assortment of cooperative genetic and epigenetic events drive the resistant phenotype. Herein, we summarize results using a variety of genomic technologies to highlight the power of this methodology in providing insight into the biological mechanisms that impart resistant disease.
Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Medicina de Precisão/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Criança , Regulação Leucêmica da Expressão Gênica , Genômica , Humanos , Prevenção SecundáriaRESUMO
Background: Liquid biopsy assays that detect cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) are a promising tool for disease monitoring in pediatric patients with primary central nervous system (CNS) tumors. As a compliment to tissue-derived molecular analyses, CSF liquid biopsy has the potential to transform risk stratification, prognostication, and precision medicine approaches. Methods: In this pilot study, we evaluated a clinical pipeline to determine feasibility and sensitivity of low-pass whole genome sequencing (LP-WGS) of CSF-derived cfDNA from patients with CNS embryonal tumors. Thirty-two longitudinal CSF samples collected from 17 patients with molecularly characterized medulloblastoma (12), embryonal tumor with multilayered rosettes (2), CNS embryonal tumor, not elsewhere classified (NEC) (2), and atypical teratoid/rhabdoid tumor (1) were analyzed. Results: Adequate CSF-derived cfDNA for LP-WGS analysis was obtained in 94% of samples (30/32). Copy number variants compatible with neoplasia were detected in 90% (27/30) and included key alterations, such as isodicentric ch17, monosomy 6, and MYCN amplification, among others. Compared to tissue specimens, LP-WGS detected additional aberrations in CSF not previously identified in corresponding primary tumor specimens, suggesting a more comprehensive profile of tumor heterogeneity or evolution of cfDNA profiles over time. Among the 12 CSF samples obtained at initial staging, only 2 (17%) were cytologically positive, compared to 11 (92%) that were copy number positive by LP-WGS. Conclusions: LP-WGS of CSF-derived cfDNA is feasible using a clinical platform, with greater sensitivity for tumor detection compared to conventional CSF cytologic analysis at initial staging. Large prospective studies are needed to further evaluate LP-WGS as a predictive biomarker.
RESUMO
BACKGROUND: This study evaluated the safety and pharmacokinetics (PK) of oral ONC201 administered twice-weekly on consecutive days (D1D2) in pediatric patients with newly diagnosed DIPG and/or recurrent/refractory H3 K27M glioma. METHODS: This phase 1 dose-escalation and expansion study included pediatric patients with H3 K27M-mutant glioma and/or DIPG following ≥1 line of therapy (NCT03416530). ONC201 was administered D1D2 at 3 dose levels (DLs; -1, 1, and 2). The actual administered dose within DLs was dependent on weight. Safety was assessed in all DLs; PK analysis was conducted in DL2. Patients receiving once-weekly ONC201 (D1) served as a PK comparator. RESULTS: Twelve patients received D1D2 ONC201 (DL1, nâ =â 3; DL1, nâ =â 3; DL2, nâ =â 6); no dose-limiting toxicities or grade ≥3 treatment-related adverse events occurred. PK analyses at DL2 (D1-250 mg, nâ =â 3; D1-625 mg, nâ =â 3; D1D2-250 mg, nâ =â 2; D1D2-625 mg, nâ =â 2) demonstrated variability in Cmax, AUC0-24, and AUC0-48, with comparable exposures across weight groups. No accumulation occurred with D1D2 dosing; the majority of ONC201 cleared before administration of the second dose. Cmax was variable between groups but did not appear to increase with D1D2 dosing. AUC0-48 was greater with D1D2 than once-weekly. CONCLUSIONS: ONC201 given D1D2 was well tolerated at all DLs and associated with greater AUC0-48.
Assuntos
Neoplasias Encefálicas , Glioma , Mutação , Humanos , Masculino , Feminino , Criança , Adolescente , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Pré-Escolar , Histonas , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Pirimidinas/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Esquema de Medicação , Dose Máxima Tolerável , Relação Dose-Resposta a Droga , Prognóstico , SeguimentosRESUMO
PURPOSE: B7-H3 is an immunoregulatory protein overexpressed by many pediatric solid tumors with limited expression on critical organs, making it an attractive immunotherapy target. We present a first-in-human phase I clinical trial systemically administered B7-H3 chimeric antigen receptor (CAR) T cells for young patients with relapsed or refractory solid tumors. PATIENTS AND METHODS: Patients were enrolled onto a phase I trial to examine the safety of B7-H3-specific CARs at various dose levels (DLs) using a standard 3 + 3 dose escalation design. RESULTS: Sixteen patients (range, 11-24 years; median, 18.5 years) were enrolled, and nine were treated at DL1 (0.5 × 106 CAR T cells/kg; n = 3) or DL2 (1 × 106 CAR T cells/kg; n = 6). There were no first infusion dose-limiting toxicities. Maximum first-infusion circulating CAR T cells detected in the peripheral blood were 4.98 cells/µL (range, 0-4.98 cells/µL) with detection of CAR T cells colocalizing with tumor cells at the site of metastatic disease in one patient. Patients were eligible for subsequent infusions. An objective partial response by PERCIST criteria was observed 28 days after a second CAR T cell infusion in a patient who did not have an objective response after the first infusion. The second infusion demonstrated marked enhancement of CAR T cell expansion to 1,590 cells/µL and was accompanied by cytokine release syndrome and dose-limiting transaminitis. Detailed peripheral blood cytokine profiling revealed elevated IL-21 levels preinfusion 2 compared with infusion 1. CONCLUSION: B7-H3 CAR T cells are tolerable and demonstrate limited antitumor activity without acute on-target, off-tumor toxicity. High levels of CAR T cell expansion may be necessary to achieve objective responses, but undefined host and tumor microenvironment factors appear to be critical (ClinicalTrials.gov identifier: NCT04483778).
RESUMO
BACKGROUND: A major obstacle in translating the therapeutic potential of chimeric antigen receptor (CAR) T cells to children with central nervous system (CNS) tumors is the blood-brain barrier. To overcome this limitation, preclinical and clinical studies have supported the use of repeated, locoregional intracranial CAR T-cell delivery. However, there is limited literature available describing the process for the involvement of an investigational drug service (IDS) pharmacy, particularly in the setting of a children's hospital with outpatient dosing for CNS tumors. OBJECTIVES: To describe Seattle Children's Hospital's experience in clinically producing CAR T cells and the implementation of IDS pharmacy practices used to deliver more than 300 intracranial CAR T-cell doses to children, as well as to share how we refined the processing techniques from CAR T-cell generation to the thawing of fractionated doses for intracranial delivery. METHODS: Autologous CD4+ and CD8+ T cells were collected and transduced to express HER2, EGFR, or B7-H3-specific CAR T cells. Cryopreserved CAR T cells were thawed by the IDS pharmacy before intracranial delivery to patients with recurrent/refractory CNS tumors or with diffuse intrinsic pontine glioma/diffuse midline glioma. RESULTS: The use of a thaw-and-dilute procedure for cryopreserved individual CAR T-cell doses provides reliable viability and is more efficient than typical thaw-and-wash protocols. Cell viability with the thaw-and-dilute protocol was approximately 75% and was always within 10% of the viability assessed at cryopreservation. Cell viability was preserved through 6 hours after thawing, which exceeded the 1-hour time frame from thawing to infusion. CONCLUSION: As the field of adoptive immunotherapy grows and continues to bring hope to patients with fatal CNS malignancies, it is critical to focus on improving the preparatory steps for CAR T-cell delivery.
RESUMO
While multiple factors impact disease, artificial intelligence (AI) studies in medicine often use small, non-diverse patient cohorts due to data sharing and privacy issues. Federated learning (FL) has emerged as a solution, enabling training across hospitals without direct data sharing. Here, we present FL-PedBrain, an FL platform for pediatric posterior fossa brain tumors, and evaluate its performance on a diverse, realistic, multi-center cohort. Pediatric brain tumors were targeted due to the scarcity of such datasets, even in tertiary care hospitals. Our platform orchestrates federated training for joint tumor classification and segmentation across 19 international sites. FL-PedBrain exhibits less than a 1.5% decrease in classification and a 3% reduction in segmentation performance compared to centralized data training. FL boosts segmentation performance by 20 to 30% on three external, out-of-network sites. Finally, we explore the sources of data heterogeneity and examine FL robustness in real-world scenarios with data imbalances.