Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioinformatics ; 38(6): 1729-1731, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34978573

RESUMO

SUMMARY: As the amount of 3D chromosomal interaction data continues to increase, storing and accessing such data efficiently becomes paramount. We introduce Pairs, a block-compressed text file format for storing paired genomic coordinates from Hi-C data, and Pairix, an open-source C application to index and query Pairs files. Pairix (also available in Python and R) extends the functionalities of Tabix to paired coordinates data. We have also developed PairsQC, a collapsible HTML quality control report generator for Pairs files. AVAILABILITY AND IMPLEMENTATION: The format specification and source code are available at https://github.com/4dn-dcic/pairix, https://github.com/4dn-dcic/Rpairix and https://github.com/4dn-dcic/pairsqc.


Assuntos
Genômica , Software , Análise de Sequência , Cromossomos , Controle de Qualidade
2.
Bioinformatics ; 35(21): 4424-4426, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077294

RESUMO

SUMMARY: We introduce Tibanna, an open-source software tool for automated execution of bioinformatics pipelines on Amazon Web Services (AWS). Tibanna accepts reproducible and portable pipeline standards including Common Workflow Language (CWL), Workflow Description Language (WDL) and Docker. It adopts a strategy of isolation and optimization of individual executions, combined with a serverless scheduling approach. Pipelines are executed and monitored using local commands or the Python Application Programming Interface (API) and cloud configuration is automatically handled. Tibanna is well suited for projects with a range of computational requirements, including those with large and widely fluctuating loads. Notably, it has been used to process terabytes of data for the 4D Nucleome (4DN) Network. AVAILABILITY AND IMPLEMENTATION: Source code is available on GitHub at https://github.com/4dn-dcic/tibanna. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Fluxo de Trabalho , Biologia Computacional , Idioma
3.
Nucleic Acids Res ; 46(4): e20, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186545

RESUMO

Single cell whole-genome sequencing (scWGS) is providing novel insights into the nature of genetic heterogeneity in normal and diseased cells. However, the whole-genome amplification process required for scWGS introduces biases into the resulting sequencing that can confound downstream analysis. Here, we present a statistical method, with an accompanying package PaSD-qc (Power Spectral Density-qc), that evaluates the properties and quality of single cell libraries. It uses a modified power spectral density to assess amplification uniformity, amplicon size distribution, autocovariance and inter-sample consistency as well as to identify chromosomes with aberrant read-density profiles due either to copy alterations or poor amplification. These metrics provide a standard way to compare the quality of single cell samples as well as yield information necessary to improve variant calling strategies. We demonstrate the usefulness of this tool in comparing the properties of scWGS protocols, identifying potential chromosomal copy number variation, determining chromosomal and subchromosomal regions of poor amplification, and selecting high-quality libraries from low-coverage data for deep sequencing. The software is available free and open-source at https://github.com/parklab/PaSDqc.


Assuntos
Sequenciamento Completo do Genoma/normas , Variações do Número de Cópias de DNA , Humanos , Controle de Qualidade , Análise de Célula Única/normas , Software , Sequenciamento Completo do Genoma/métodos
4.
Nat Commun ; 13(1): 2365, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501320

RESUMO

The 4D Nucleome (4DN) Network aims to elucidate the complex structure and organization of chromosomes in the nucleus and the impact of their disruption in disease biology. We present the 4DN Data Portal ( https://data.4dnucleome.org/ ), a repository for datasets generated in the 4DN network and relevant external datasets. Datasets were generated with a wide range of experiments, including chromosome conformation capture assays such as Hi-C and other innovative sequencing and microscopy-based assays probing chromosome architecture. All together, the 4DN data portal hosts more than 1800 experiment sets and 36000 files. Results of sequencing-based assays from different laboratories are uniformly processed and quality-controlled. The portal interface allows easy browsing, filtering, and bulk downloads, and the integrated HiGlass genome browser allows interactive visualization and comparison of multiple datasets. The 4DN data portal represents a primary resource for chromosome contact and other nuclear architecture data for the scientific community.


Assuntos
Cromossomos , Software , Núcleo Celular/genética , Cromossomos/genética , Genoma
5.
Science ; 359(6375): 555-559, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217584

RESUMO

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Assuntos
Envelhecimento/genética , Reparo do DNA/genética , Taxa de Mutação , Doenças Neurodegenerativas/genética , Neurogênese/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Síndrome de Cockayne/genética , Análise Mutacional de DNA , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neurônios , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/embriologia , Análise de Célula Única , Sequenciamento Completo do Genoma , Xeroderma Pigmentoso/genética , Adulto Jovem
7.
Neurosci Lett ; 616: 182-8, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26845562

RESUMO

Specialized hypothalamic neurons integrate the homeostatic balance between food intake and energy expenditure, processes that may become dysregulated during the development of diabetes, obesity, and other metabolic disorders. Shaker family voltage-gated potassium channels (Kv1) contribute to the maintenance of resting membrane potential, action potential characteristics, and neurotransmitter release in many populations of neurons, although hypothalamic Kv1 channel expression has been largely unexplored. Whole-cell patch clamp recordings from avian hypothalamic brain slices demonstrate a developmental shift in the electrophysiological properties of avian arcuate nucleus neurons, identifying an increase in outward ionic current that corresponds with action potential maturation. Additionally, RT-PCR experiments identified the early expression of Kv1.2, Kv1.3, and Kv1.5 mRNA in the embryonic avian hypothalamus, suggesting that these channels may underlie the electrophysiological changes observed in these neurons. Real-time quantitative PCR analysis on intact microdissections of embryonic hypothalamic tissue revealed a concomitant increase in Kv1.2 and Kv1.5 gene expression at key electrophysiological time points during development. This study is the first to demonstrate hypothalamic mRNA expression of Kv1 channels in developing avian embryos and may suggest a role for voltage-gated ion channel regulation in the physiological patterning of embryonic hypothalamic circuits governing energy homeostasis.


Assuntos
Hipotálamo/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Potenciais de Ação , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/citologia , Hipotálamo/embriologia , Técnicas In Vitro , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Superfamília Shaker de Canais de Potássio/genética
8.
Environ Toxicol Chem ; 35(7): 1727-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26606276

RESUMO

The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in freshwater lakes. Although TFM can have sublethal and lethal effects, little is known about gene expression changes with TFM exposure. Microarray analysis was used to determine differential gene expression over 4 h of exposure in Saccharomyces cerevisiae. Among the most significantly up-regulated genes were regulators of carbohydrate transport, including HXT1, HXT3, HXT4, IMA5, MIG2, and YKR075C. Environ Toxicol Chem 2016;35:1727-1732. © 2015 SETAC.


Assuntos
Metabolismo dos Carboidratos/genética , Expressão Gênica/efeitos dos fármacos , Nitrofenóis/toxicidade , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Transporte Biológico , Relação Dose-Resposta a Droga , Estudo de Associação Genômica Ampla , Hidrólise , Petromyzon/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA