RESUMO
Evaluation of kinetic parameters of drug-target binding, kon, koff, and residence time (RT), in addition to the traditional in vitro parameter of affinity is receiving increasing attention in the early stages of drug discovery. Target binding kinetics emerges as a meaningful concept for the evaluation of a ligand's duration of action and more generally drug efficacy and safety. We report the biological evaluation of a novel series of spirobenzo-oxazinepiperidinone derivatives as inhibitors of the human equilibrative nucleoside transporter 1 (hENT1, SLC29A1). The compounds were evaluated in radioligand binding experiments, i.e., displacement, competition association, and washout assays, to evaluate their affinity and binding kinetic parameters. We also linked these pharmacological parameters to the compounds' chemical characteristics, and learned that separate moieties of the molecules governed target affinity and binding kinetics. Among the 29 compounds tested, 28 stood out with high affinity and a long residence time of 87 min. These findings reveal the importance of supplementing affinity data with binding kinetics at transport proteins such as hENT1.
Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Tioinosina , Humanos , Transporte Biológico , Tioinosina/metabolismo , Tioinosina/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/química , Transportador Equilibrativo 1 de Nucleosídeo/metabolismoRESUMO
A2B adenosine receptor (A2BAR) antagonists have therapeutic potential in inflammation-related diseases such as asthma, chronic obstructive pulmonary disease and cancer. However, no drug is currently clinically approved, creating a demand for research on novel antagonists. Over the last decade, the study of target binding kinetics, along with affinity and potency, has been proven valuable in early drug discovery stages, as it is associated with improved in vivo drug efficacy and safety. In this study, we report the synthesis and biological evaluation of a series of xanthine derivatives as A2BAR antagonists, including an isothiocyanate derivative designed to bind covalently to the receptor. All 28 final compounds were assessed in radioligand binding experiments, to evaluate their affinity and for those qualifying, kinetic binding parameters. Both structure-affinity and structure-kinetic relationships were derived, providing a clear relationship between affinity and dissociation rate constants. Two structurally similar compounds, 17 and 18, were further evaluated in a label-free assay due to their divergent kinetic profiles. An extended cellular response was associated with long A2BAR residence times. This link between a ligand's A2BAR residence time and its functional effect highlights the importance of binding kinetics as a selection parameter in the early stages of drug discovery.
Assuntos
Antagonistas de Receptores Purinérgicos P1 , Xantinas , Antagonistas do Receptor A2 de Adenosina/farmacologia , Cinética , Ensaio Radioligante , Receptor A2B de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Xantinas/farmacologiaRESUMO
In the last decade it has been recapitulated that receptor-ligand binding kinetics is a relevant additional parameter in drug discovery to improve in vivo drug efficacy and safety. The equilibrative nucleoside transporter-1 (ENT1, SLC29A1) is an important drug target, as transporter inhibition is a potential treatment of ischemic heart disease, stroke, and cancer. Currently, two non-selective ENT1 inhibitors (dilazep and dipyridamole) are on the market as vasodilators. However, their binding kinetics are unknown; moreover, novel, more effective and selective inhibitors are still needed. Hence, this study focused on the incorporation of binding kinetics for finding new and improved ENT1 inhibitors. We developed a radioligand competition association assay to determine the binding kinetics of ENT1 inhibitors with four chemical scaffolds (including dilazep and dipyridamole). The kinetic parameters were compared to the affinities obtained from a radioligand displacement assay. Three of the scaffolds presented high affinities with relatively fast dissociation kinetics, yielding short to moderate residence times (RTs) at the protein (1-44 min). While compounds from the fourth scaffold, i.e. draflazine analogues, also had high affinity, they displayed significantly longer RTs, with one analogue (4) having a RT of over 10 h. Finally, a label-free assay was used to evaluate the impact of divergent ENT1 inhibitor binding kinetics in a functional assay. It was shown that the potency of compound 4 increased with longer incubation times, which was not observed for draflazine, supporting the importance of long RT for increased target-occupancy and effect. In conclusion, our research shows that high affinity ENT1 inhibitors show a large variation in residence times at this transport protein. As a consequence, incorporation of binding kinetic parameters adds to the design criteria and may thus result in a different lead compound selection. Taken together, this kinetic approach could inspire future drug discovery in the field of ENT1 and membrane transport proteins in general.
Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Piperazinas/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Linhagem Celular Tumoral , Dilazep/química , Dilazep/farmacologia , Dipiridamol/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/química , Humanos , Estrutura Molecular , Piperazinas/química , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-AtividadeRESUMO
Transporters are important therapeutic but yet understudied targets due to lack of available assays. Here we describe a novel label-free, whole-cell method for the functional assessment of Solute Carrier (SLC) inhibitors. As many SLC substrates are also ligands for G protein-coupled receptors (GPCRs), transporter inhibition may affect GPCR signalling due to a change in extracellular concentration of the substrate/ligand, which can be monitored by an impedance-based label-free assay. For this study, a prototypical SLC/GPCR pair was selected, i.e. the equilibrative nucleoside transporter-1 (SLC29A1/ENT1) and an adenosine receptor (AR), for which adenosine is the substrate/ligand. ENT1 inhibition with three reference compounds was monitored sensitively via AR activation on human osteosarcoma cells. Firstly, the inhibitor addition resulted in an increased apparent potency of adenosine. Secondly, all inhibitors concentration-dependently increased the extracellular adenosine concentration, resulting in an indirect quantitative assessment of their potencies. Additionally, AR activation was abolished by AR antagonists, confirming that the monitored impedance was AR-mediated. In summary, we developed a novel assay as an in vitro model system that reliably assessed the potency of SLC29A1 inhibitors via AR signalling. As such, the method may be applied broadly as it has the potential to study a multitude of SLCs via concomitant GPCR signalling.