Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285076

RESUMO

Grain boundary formation during coarsening of nanoporous gold (NPG) is investigated wherein a nanocrystalline structure can form by particles detaching and reattaching to the structure. MicroLaue and electron backscatter diffraction measurements demonstrate that an in-grain orientation spread develops as NPG is coarsened. The volume fraction of the NPG sample is near the limit of bicontinuity, at which simulations predict that a bicontinuous structure begins to fragment into independent particles during coarsening. Phase-field simulations of coarsening using a computationally generated structure with a volume fraction near the limit of bicontinuity are used to model particle detachment rates. This model is tested by using the measured NPG structure as an initial condition in the phase-field simulations. We predict that up to ∼5% of the NPG structure detaches as a dealloyed [Formula: see text] sample is annealed at 300 °C for 420 min. The quantity of volume detached is found to be highly dependent on the volume fraction and volume fraction homogeneity of the nanostructure. As the void phase in the experiments cannot support independent particles, they must fall and reattach to the structure, a process that results in the formation of new grain boundaries. This particle reattachment process, along with other classic processes, leads to the formation of grain boundaries during coarsening in nanoporous metals. The formation of grain boundaries can impact a variety of applications, including mechanical strengthening; thus, the consideration and understanding of particle detachment phenomena are essential when studying nanoporous metals.

2.
Nano Lett ; 21(12): 5324-5329, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34109786

RESUMO

The stability of supported metal nanoparticles determines the activity and lifetime of heterogeneous catalysts. Catalysts can destabilize through several thermodynamic and kinetic pathways, and the competition between these mechanisms complicates efforts to quantify and predict the overall evolution of supported nanoparticles in reactive environments. Pairing in situ transmission electron microscopy with unsupervised machine learning, we quantify the destabilization of hundreds of supported Au nanoparticles in real-time to develop a model describing the observed particle evolution as a competition between evaporation and surface diffusion. Data mining of particle evolution statistics allows us to determine physically reasonable values for the model parameters, quantify the particle size at which the Gibbs-Thomson pressure accelerates the evaporation process, and explore how individual particle interactions deviate from the mean-field model. This approach can be applied to a wide range of supported nanoparticle systems, allowing quantitative insight into the mechanisms that control their evolution in reactive environments.


Assuntos
Nanopartículas Metálicas , Catálise , Ouro , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
3.
Nano Lett ; 21(16): 6813-6819, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34379413

RESUMO

Copper (Cu) is a catalyst broadly used in industry for hydrogenation of carbon dioxide, which has broad implications for environmental sustainability. An accurate understanding of the degeneration behavior of Cu catalysts under operando conditions is critical for uncovering the failure mechanism of catalysts and designing novel ones with optimized performance. Despite the widespread use of these materials, their failure mechanisms are not well understood because conventional characterization techniques lack the necessary time and spatial resolution to capture these complex behaviors. In order to overcome these challenges, we carried out transmission electron microscopy (TEM) with a specialized in situ gas environmental holder, which allows us to unravel the dynamic behavior of the Cu nanowires (NWs) in operando. The failure process of these nanoscale Cu catalysts under CO2 atmosphere were tracked and further rationalized based on our numerical modeling using phase-field methods.

5.
Nano Lett ; 18(10): 6427-6433, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30256644

RESUMO

Formation mechanisms of dendrite structures have been extensively explored theoretically, and many theoretical predictions have been validated for micro- or macroscale dendrites. However, it is challenging to determine whether classical dendrite growth theories are applicable at the nanoscale due to the lack of detailed information on the nanodendrite growth dynamics. Here, we study iron oxide nanodendrite formation using liquid cell transmission electron microscopy (TEM). We observe "seaweed"-like iron oxide nanodendrites growing predominantly in two dimensions on the membrane of a liquid cell. By tracking the trajectories of their morphology development with high spatial and temporal resolution, it is possible to explore the relationship between the tip curvature and growth rate, tip splitting mechanisms, and the effects of precursor diffusion and depletion on the morphology evolution. We show that the growth of iron oxide nanodendrites is remarkably consistent with the existing theoretical predictions on dendritic morphology evolution during growth, despite occurring at the nanoscale.

6.
Phys Rev Lett ; 121(14): 145701, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339439

RESUMO

We report experimental results on the composition and crystallography of oxides formed on NiCrMo alloys during both high-temperature oxidation and aqueous corrosion experiments. Detailed characterization using transmission electron microscopy and diffraction, aberration-corrected chemical analysis, and atom probe tomography shows unexpected combinations of composition and crystallography, far outside thermodynamic solubility limits. The results are explained using a theory for nonequilibrium solute capture that combines thermodynamic, kinetic, and density functional theory analyses. In this predictive nonequilibrium framework, the composition and crystallography are controlled by the rapidly moving interface. The theoretical framework explains the unusual combinations of composition and crystallography, which we predict will be common for many other systems in oxidation and corrosion, and other solid-state processes involving nonequilibrium moving interfaces.

7.
Nano Lett ; 16(10): 6196-6206, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27576749

RESUMO

The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts.

8.
Nano Lett ; 14(3): 1288-92, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24527789

RESUMO

A twin-plane based nanowire growth mechanism is established using Au catalyzed Ge nanowire growth as a model system. Video-rate lattice-resolved environmental transmission electron microscopy shows a convex, V-shaped liquid catalyst-nanowire growth interface for a ⟨112⟩ growth direction that is composed of two Ge {111} planes that meet at a twin boundary. Unlike bulk crystals, the nanowire geometry allows steady-state growth with a single twin boundary at the nanowire center. We suggest that the nucleation barrier at the twin-plane re-entrant groove is effectively reduced by the line energy, and hence the twin acts as a preferential nucleation site that dictates the lateral step flow cycle which constitutes nanowire growth.

9.
Opt Express ; 22(20): 24606-21, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25322036

RESUMO

Phase contrast X-ray tomography (PCT) enables the study of systems consisting of elements with similar atomic numbers. Processing datasets acquired using PCT is nontrivial because of the low-pass characteristics of the commonly used single-image phase retrieval algorithm. In this study, we introduce an image processing methodology that simultaneously utilizes both phase and attenuation components of an image obtained at a single detector distance. This novel method, combined with regularized Perona-Malik filter and bias-corrected fuzzy C-means algorithm, allows for automated segmentation of data acquired through four-dimensional PCT. Using this integrated approach, the three-dimensional coarsening morphology of an Aluminum-29.9 wt% Silicon alloy can be analyzed.

10.
Nano Lett ; 13(1): 199-206, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23237496

RESUMO

The vapor-liquid-solid (VLS) process of semiconductor nanowire growth is an attractive approach to low-dimensional materials and heterostructures because it provides a mechanism to modulate, in situ, nanowire composition and doping, but the ultimate limits on doping control are ultimately dictated by the growth process itself. Under widely used conditions for the chemical vapor deposition growth of Si and Ge nanowires from a Au catalyst droplet, we find that dopants incorporated from the liquid are not uniformly distributed. Specifically, atom probe tomographic analysis revealed up to 100-fold enhancements in dopant concentration near the VLS trijunction in both B-doped Si and P-doped Ge nanowires. We hypothesize that radial and azimuthal inhomogeneities arise from a faceted liquid-solid interface present during nanowire growth, and we present a simple model to account for the distribution. As the same segregation behavior was observed in two distinct semiconductors with different dopants, the observed inhomogeneity is likely to be present in other VLS grown nanowires.

11.
Nano Lett ; 12(1): 167-71, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22111988

RESUMO

Scanning and transmission electron microscopy was used to correlate the structure of planar defects with the prevalence of Au catalyst atom incorporation in Si nanowires. Site-specific high-resolution imaging along orthogonal zone axes, enabled by advances in focused ion beam cross sectioning, reveals substantial incorporation of catalyst atoms at grain boundaries in <110> oriented nanowires. In contrast, (111) stacking faults that generate new polytypes in <112> oriented nanowires do not show preferential catalyst incorporation. Tomographic reconstruction of the catalyst-nanowire interface is used to suggest criteria for the stability of planar defects that trap impurity atoms in catalyst-mediated nanowires.


Assuntos
Cristalização/métodos , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
ACS Nano ; 15(3): 3971-3995, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33577296

RESUMO

Multiscale and multimodal imaging of material structures and properties provides solid ground on which materials theory and design can flourish. Recently, KAIST announced 10 flagship research fields, which include KAIST Materials Revolution: Materials and Molecular Modeling, Imaging, Informatics and Integration (M3I3). The M3I3 initiative aims to reduce the time for the discovery, design and development of materials based on elucidating multiscale processing-structure-property relationship and materials hierarchy, which are to be quantified and understood through a combination of machine learning and scientific insights. In this review, we begin by introducing recent progress on related initiatives around the globe, such as the Materials Genome Initiative (U.S.), Materials Informatics (U.S.), the Materials Project (U.S.), the Open Quantum Materials Database (U.S.), Materials Research by Information Integration Initiative (Japan), Novel Materials Discovery (E.U.), the NOMAD repository (E.U.), Materials Scientific Data Sharing Network (China), Vom Materials Zur Innovation (Germany), and Creative Materials Discovery (Korea), and discuss the role of multiscale materials and molecular imaging combined with machine learning in realizing the vision of M3I3. Specifically, microscopies using photons, electrons, and physical probes will be revisited with a focus on the multiscale structural hierarchy, as well as structure-property relationships. Additionally, data mining from the literature combined with machine learning will be shown to be more efficient in finding the future direction of materials structures with improved properties than the classical approach. Examples of materials for applications in energy and information will be reviewed and discussed. A case study on the development of a Ni-Co-Mn cathode materials illustrates M3I3's approach to creating libraries of multiscale structure-property-processing relationships. We end with a future outlook toward recent developments in the field of M3I3.

13.
Nano Lett ; 9(8): 2867-72, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19588906

RESUMO

Bismuth telluride (Bi(2)Te(3)) nanowires are of great interest as nanoscale building blocks for high-efficiency thermoelectric devices. Their low-dimensional character leads to an enhanced figure-of-merit (ZT), an indicator of thermoelectric efficiency. Herein, we report the invention of a direct growth method termed On-Film Formation of Nanowires (OFF-ON) for making high-quality single-crystal compound semiconductor nanowires, that is, Bi(2)Te(3), without the use of conventional templates, catalysts, or starting materials. We have used the OFF-ON technique to grow single crystal compound semiconductor Bi(2)Te(3) nanowires from sputtered BiTe films after thermal annealing at 350 degrees C. The mechanism for wire growth is stress-induced mass flow along grain boundaries in the polycrystalline film. OFF-ON is a simple but powerful method for growing perfect single-crystal compound semiconductor nanowires of high aspect ratio with high crystallinity that distinguishes it from other competitive growth approaches that have been developed to date.

14.
Phys Rev E ; 101(2-1): 022802, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168680

RESUMO

The kinetics of oxidation is examined using a phase-field model of electrochemistry when the oxide film is smaller than the Debye length. As a test of the model, the phase-field approach recovers the results of classical Wagner diffusion-controlled oxide growth when the interfacial mobility of the oxide-metal interface is large and the films are much thicker than the Debye length. However, for small interfacial mobilities, where the growth is reaction controlled, we find that the film increases in thickness linearly in time, and that the phase-field model naturally leads to an electrostatic overpotential at the interface that affects the prefactor of the linear growth law. Since the interface velocity decreases with the distance from the oxide vapor, for a fixed interfacial mobility, the film will transition from reaction- to diffusion-controlled growth at a characteristic thickness. For thin films, we find that in the limit of high interfacial mobility we recover a Wagner-type parabolic growth law in the limit of a composition-independent mobility. A composition-dependent mobility leads to a nonparabolic kinetics at small thickness, but for the materials parameters chosen, the deviation from parabolic kinetics is small. Unlike classical oxidation models, we show that the phase-field model can be used to examine the dynamics of nonplanar oxide interfaces that are routinely observed in experiment. As an illustration, we examine the evolution of nonplanar interfaces when the oxide is growing only by anion diffusion and find that it is morphologically stable.

15.
Phys Rev E ; 100(2-1): 022802, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574741

RESUMO

A prescribed, horizontal temperature gradient is imposed upon a horizontal liquid layer bounded from above by a deformable, liquid-gas interface and bounded from below by a partial-slip, rigid surface. A steady shear flow driven by thermocapillary motion emerges. This dynamic liquid layer is susceptible to the onset of oblique three-dimensional hydrothermal waves, purely two-dimensional hydrothermal waves, longitudinal traveling waves, and longitudinal rolls depending on the capillary number. A low capillary number analysis finds that surface deformations are destabilizing for all modes of instability. There is a preference for two-dimensional hydrothermal waves when there are surface deformations. Though longitudinal traveling waves are never selected as the preferred mode of instability, these waves offer a convenient way to understand the behavior of oblique hydrothermal waves, which are near-longitudinal. This is especially the case for low capillary numbers, but oblique hydrothermal waves instead tend to align themselves with the direction of flow as the capillary number increases. Surface deformations affect longitudinal waves most significantly out of all the modes of instability, especially for low Prandtl numbers. The typical length scales shorten and the critical Marangoni numbers increase with the capillary number for all types of modes. Notably, the system selects long waves near a critical Prandtl number when the interface is nondeformable and when the layer is subject to partial slip, but this is no longer the case when the upper surface is deformable.

16.
Adv Mater ; 31(35): e1902980, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31268579

RESUMO

The accurate characterization of thermal conductivity κ, particularly at high temperature, is of paramount importance to many materials, thermoelectrics in particular. The ease and access of thermal diffusivity D measurements allows for the calculation of κ when the volumetric heat capacity, ρcp , of the material is known. However, in the relation κ = ρcp D, there is some confusion as to what value of cp should be used in materials undergoing phase transformations. Herein, it is demonstrated that the Dulong-Petit estimate of cp at high temperature is not appropriate for materials having phase transformations with kinetic timescales relevant to thermal transport. In these materials, there is an additional capacity to store heat in the material through the enthalpy of transformation ΔH. This can be described using a generalized model for the total heat capacity for a material [Formula: see text] where φ is an order parameter that describes how much latent heat responds "instantly" to temperature changes. Here, Cpφ is the intrinsic heat capacity (e.g., approximately the Dulong-Petit heat capacity at high temperature). It is shown experimentally in Zn4 Sb3 that the decrease in D through the phase transition at 250 K is fully accounted for by the increase in cp , while κ changes smoothly through the phase transition. Consequently, reports of κ dropping near phase transitions in widely studied materials such as PbTe and SnSe have likely overlooked the effects of excess heat capacity and overestimated the thermoelectric efficiency, zT.

17.
Nanoscale ; 11(16): 7798-7804, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30957818

RESUMO

We present a novel self-assembly route to align SiGe quantum dots. By a combination of theoretical analyses and experimental investigation, we show that epitaxial SiGe quantum dots can cluster in ordered closely packed assemblies, revealing an attractive phenomenon. We compute nucleation energy barriers, accounting for elastic effects between quantum dots through both elastic energy and strain-dependent surface energy. If the former is mostly repulsive, we show that the decrease in the surface energy close to an existing island reduces the nucleation barrier. It subsequently increases the probability of nucleation close to an existing island, and turns out to be equivalent to an effective attraction between dots. We show by Monte-Carlo simulations that this effect describes well the experimental results, revealing a new mechanism ruling self-organisation of quantum dots. Such a generic process could be observed in various heterogeneous systems and could pave the way for a wide range of applications.

18.
Adv Mater ; 31(21): e1900108, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30968467

RESUMO

The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer.

19.
J Open Res Softw ; 7(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38486803

RESUMO

Scientific communities struggle with the challenge of effectively and efficiently sharing content and data. An online portal provides a valuable space for scientific communities to discuss challenges and collate scientific results. Examples of such portals include the Micromagnetic Modeling Group (µMAG [1]), the Interatomic Potentials Repository (IPR [2, 3]) and on a larger scale the NIH Genetic Sequence Database (GenBank [4]). In this work, we present a description of a generic web portal that leverages existing online services to provide a framework that may be adopted by other small scientific communities. The first deployment of the PFHub framework supports phase-field practitioners and code developers participating in an effort to improve quality assurance for phase-field codes.

20.
ACS Appl Mater Interfaces ; 10(10): 9136-9146, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29446919

RESUMO

The classic models of metal oxidation developed by Wagner and Cabrera and Mott presuppose the existence of a planar oxide film and develop expressions for the rate at which the film thickens. Missing from those models is a description of how that initially planar film forms. Using scanning tunneling microscopy, we study the growth of NiO islands on the (100) surface of a Ni-5Cr alloy during the oxidation regime where the initial planar film is formed as oxide islands. The island height and area distributions as a function of the oxygen exposure in Langmuir (1 L = 10-6 Torr s) are measured. Lateral island growth and thickening occur as seemingly separate processes, and after a critical thickness of ≈0.4 nm is achieved, growth is purely in the lateral direction. We develop a surface diffusion model for the evolution of the island size distribution that accounts for the lateral growth and coalescence of the NiO islands. Our results indicate that the oxygen surface diffusion screening length [Formula: see text] controls the island evolution. The screening length is found to be 0.3-0.4 nm, which suggests that the processes leading to island growth are highly localized to the island edge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA