Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767747

RESUMO

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Assuntos
Inflamação/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Purinas/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Transdução de Sinais
2.
Mol Cell ; 78(6): 1019-1033, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32559423

RESUMO

The growing field of immune metabolism has revealed promising indications for metabolic targets to modulate anti-cancer immunity. Combination therapies involving metabolic inhibitors with immune checkpoint blockade (ICB), chemotherapy, radiation, and/or diet now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment (TME). Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. These changes also reveal opportunities to reshape the TME by targeting metabolic pathways to favor immunity. Here we explore current strategies that shift immune cell metabolism to pro-inflammatory states in the TME and highlight a need to better replicate physiologic conditions to select targets, clarify mechanisms, and optimize metabolic inhibitors. Unifying our understanding of these pathways and interactions within the heterogenous TME will be instrumental to advance this promising field and enhance immunotherapy.


Assuntos
Imunoterapia/tendências , Neoplasias/metabolismo , Microambiente Tumoral/imunologia , Humanos , Fatores Imunológicos/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos
3.
J Immunol ; 208(2): 454-463, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930781

RESUMO

Inflammation involves a delicate balance between pathogen clearance and limiting host tissue damage, and perturbations in this equilibrium promote disease. Patients suffering from autoimmune diseases, such as systemic lupus erythematosus (SLE), have higher levels of serum S100A9 protein and increased risk for infection. S100A9 is highly abundant within neutrophils and modulates antimicrobial activity in response to bacterial pathogens. We reasoned that increased serum S100A9 in SLE patients reflects accumulation of S100A9 protein in neutrophils and may indicate altered neutrophil function. In this study, we demonstrate elevated S100A9 protein within neutrophils from SLE patients, and MRL/lpr mice associates with lower mitochondrial superoxide, decreased suicidal neutrophil extracellular trap formation, and increased susceptibility to Staphylococcus aureus infection. Furthermore, increasing mitochondrial superoxide production restored the antibacterial activity of MRL/lpr neutrophils in response to S. aureus These results demonstrate that accumulation of intracellular S100A9 associates with impaired mitochondrial homeostasis, thereby rendering SLE neutrophils inherently less bactericidal.


Assuntos
Calgranulina B/sangue , Armadilhas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Mitocôndrias/metabolismo , Staphylococcus aureus/imunologia , Animais , Suscetibilidade a Doenças/imunologia , Feminino , Homeostase/fisiologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Superóxidos/metabolismo
4.
Dev Neurosci ; 44(6): 651-670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223729

RESUMO

Reading disability (RD), which affects between 5 and 17% of the population worldwide, is the most prevalent form of learning disability, and is associated with underactivation of a universal reading network in children. However, recent research suggests there are differences in learning rates on cognitive predictors of reading performance, as well as differences in activation patterns within the reading neural network, based on orthographic depth (i.e., transparent/shallow vs. deep/opaque orthographies) in children with RD. Recently, we showed that native English-speaking children with RD exhibit impaired performance on a maze learning task that taps into the same neural networks that are activated during reading. In addition, we demonstrated that genetic risk for RD strengthens the relationship between reading impairment and maze learning performance. However, it is unclear whether the results from these studies can be broadly applied to children from other language orthographies. In this study, we examined whether low reading skill was associated with poor maze learning performance in native English-speaking and native German-speaking children, and the influence of genetic risk for RD on cognition and behavior. In addition, we investigated the link between genetic risk and performance on this task in an orthographically diverse sample of children attending an English-speaking international school in Germany. The results from our data suggest that children with low reading skill, or with a genetic risk for reading impairment, exhibit impaired performance on the maze learning task, regardless of orthographic depth. However, these data also suggest that orthographic depth influences the degree of impairment on this task. The maze learning task requires the involvement of various cognitive processes and neural networks that underlie reading, but is not influenced by potential differences in reading experience due to lack of text or oral reporting. As a fully automated tool, it does not require specialized training to administer, and current results suggest it may be a practicable screening tool for early identification of reading impairment across orthographies.


Assuntos
Dislexia , Humanos , Criança , Idioma , Aprendizagem em Labirinto
5.
Dev Neurosci ; 43(2): 116-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34186533

RESUMO

Dyslexia is a common learning disability that affects processing of written language despite adequate intelligence and educational background. If learning disabilities remain untreated, a child may experience long-term social and emotional problems, which influence future success in all aspects of their life. Dyslexia has a 60% heritability rate, and genetic studies have identified multiple dyslexia susceptibility genes (DSGs). DSGs, such as DCDC2, are consistently associated with the risk and severity of reading disability (RD). Altered neural connectivity within temporoparietal regions of the brain is associated with specific variants of DSGs in individuals with RD. Genetically altering DSG expression in mice results in visual and auditory processing deficits as well as neurophysiological and neuroanatomical disruptions. Previously, we demonstrated that learning deficits associated with RD can be translated across species using virtual environments. In this 2-year longitudinal study, we demonstrate that performance on a virtual Hebb-Williams maze in pre-readers is able to predict future reading impairment, and the genetic risk strengthens, but is not dependent on, this relationship. Due to the lack of oral reporting and use of letters, this easy-to-use tool may be particularly valuable in a remote working environment as well as working with vulnerable populations such as English language learners.


Assuntos
Dislexia , Proteínas Associadas aos Microtúbulos/genética , Animais , Dislexia/genética , Estudos Longitudinais , Aprendizagem em Labirinto , Camundongos
7.
Cell Immunol ; 327: 54-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454648

RESUMO

Restimulation-induced cell death (RICD) is an apoptotic program that regulates effector T cell expansion, triggered by repeated stimulation through the T cell receptor (TCR) in the presence of interleukin-2 (IL-2). Although CD4+ regulatory T cells (Tregs) consume IL-2 and experience frequent TCR stimulation, they are highly resistant to RICD. Resistance in Tregs is dependent on the forkhead box P3 (FOXP3) transcription factor, although the mechanism remains unclear. T cells from patients with X-linked lymphoproliferative disease (XLP-1), that lack the adaptor molecule SLAM-associated protein (SAP), are also resistant to RICD. Here we demonstrate that normal Tregs express very low levels of SAP compared to conventional T cells. FOXP3 reduces SAP expression by directly binding to and repressing the SH2D1A (SAP) promoter. Indeed, ectopic SAP expression restores RICD sensitivity in human FOXP3+ Tregs. Our findings illuminate the mechanism behind FOXP3-mediated RICD resistance in Tregs, providing new insight into their long-term persistence.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T Reguladores/metabolismo , Adulto , Apoptose/imunologia , Morte Celular/imunologia , Fatores de Transcrição Forkhead/metabolismo , Voluntários Saudáveis , Humanos , Ativação Linfocitária/fisiologia , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética
8.
Sci Immunol ; 8(79): eabq0178, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638190

RESUMO

T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron handling genes on T cells. Transferrin receptor (CD71) was identified as differentially critical for TH1 and inhibitory for induced regulatory T cells (iTregs). Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Cell surface CD71 was enhanced in SLE-prone T cells by increased endosomal recycling. Blocking CD71 reduced intracellular iron and mTORC1 signaling, which inhibited TH1 and TH17 cells yet enhanced iTregs. In vivo treatment reduced kidney pathology and increased CD4 T cell production of IL-10 in SLE-prone mice. Disease severity correlated with CD71 expression on TH17 cells from patients with SLE, and blocking CD71 in vitro enhanced IL-10 secretion. T cell iron uptake via CD71 thus contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores da Transferrina , Linfócitos T Reguladores , Animais , Camundongos , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptores da Transferrina/metabolismo , Linfócitos T Reguladores/metabolismo , Humanos
9.
Micromachines (Basel) ; 13(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36144067

RESUMO

A label-free, fixation-free and passive sorting method is presented to isolate activated T-cells shortly after activation and prior to the display of activation surface markers. It uses a recently developed sorting platform dubbed "Sorting by Interfacial Tension" (SIFT) that sorts droplets based on pH. After polyclonal (anti-CD3/CD28 bead) activation and a brief incubation on chip, droplets containing activated T-cells display a lower pH than those containing naive cells due to increased glycolysis. Under specific surfactant conditions, a change in pH can lead to a concurrent increase in droplet interfacial tension. The isolation of activated T-cells on chip is hence achieved as flattened droplets are displaced as they encounter a micro-fabricated trench oriented diagonally with respect to the direction of flow. This technique leads to an enrichment of activated primary CD4+ T-cells to over 95% from an initial mixed population of naive cells and cells activated for as little as 15 min. Moreover, since the pH change is correlated to successful activation, the technique allows the isolation of T-cells with the earliest activation and highest glycolysis, an important feature for the testing of T-cell activation modulators and to determine regulators and predictors of differentiation outcomes.

10.
Immunohorizons ; 6(12): 837-850, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547387

RESUMO

Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.


Assuntos
ATP Citrato (pro-S)-Liase , Montagem e Desmontagem da Cromatina , Epigênese Genética , Mielopoese , Animais , Camundongos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , ATP Citrato (pro-S)-Liase/genética , Cromatina/metabolismo , Mielopoese/genética
11.
Nat Commun ; 13(1): 3466, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710908

RESUMO

RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Proteômica , RNA Viral/genética , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
12.
Nat Rev Immunol ; 21(10): 637-652, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33859379

RESUMO

The metabolic charts memorized in early biochemistry courses, and then later forgotten, have come back to haunt many immunologists with new recognition of the importance of these pathways. Metabolites and the activity of metabolic pathways drive energy production, macromolecule synthesis, intracellular signalling, post-translational modifications and cell survival. Immunologists who identify a metabolic phenotype in their system are often left wondering where to begin and what does it mean? Here, we provide a framework for navigating and selecting the appropriate biochemical techniques to explore immunometabolism. We offer recommendations for initial approaches to develop and test metabolic hypotheses and how to avoid common mistakes. We then discuss how to take things to the next level with metabolomic approaches, such as isotope tracing and genetic approaches. By proposing strategies and evaluating the strengths and weaknesses of different methodologies, we aim to provide insight, note important considerations and discuss ways to avoid common misconceptions. Furthermore, we highlight recent studies demonstrating the power of these metabolic approaches to uncover the role of metabolism in immunology. By following the framework in this Review, neophytes and seasoned investigators alike can venture into the emerging realm of cellular metabolism and immunity with confidence and rigour.


Assuntos
Imunidade , Redes e Vias Metabólicas , Animais , Glicólise , Humanos , Metabolômica , Mitocôndrias/metabolismo
13.
Cell Death Dis ; 12(4): 400, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854046

RESUMO

Immune homeostasis depends upon effective clearance of pathogens while simultaneously preventing autoimmunity and immunopathology in the host. Restimulation-induced cell death (RICD) is one such mechanism where by activated T cells receive subsequent antigenic stimulation, reach a critical signal threshold through the T cell receptor (TCR), and commit to apoptosis. Many details of this process remain unclear, including the role of co-stimulatory and co-inhibitory proteins that influence the TCR signaling cascade. Here we characterize the role of T cell immunoglobulin and mucin domain containing 3 (TIM-3) in RICD regulation. TIM-3 protected newly activated CD8+ effector T cells from premature RICD during clonal expansion. Surprisingly, however, we found that TIM-3 potentiated RICD in late-stage effector T cells. The presence of TIM-3 increased proximal TCR signaling and proapoptotic protein expression in late-stage effector T cells, with no consistent signaling effects noted in newly activated cells with or without TIM-3. To better explain these differences in TIM-3 function as T cells aged, we characterized the temporal pattern of TIM-3 expression in effector T cells. We found that TIM-3 was expressed on the surface of newly activated effector T cells, but remained largely intracellular in late-stage effector cells. Consistent with this, TIM-3 required a ligand to prevent early RICD, whereas ligand manipulation had no effects at later stages. Of the known TIM-3 ligands, carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) showed the greatest difference in surface expression over time and also protected newly activated cells from premature RICD, with no measurable effects in late-stage effectors. Indeed, CEACAM1 enabled TIM-3 surface expression on T cells, implying a co-dependency for these proteins in protecting expanding T cells from premature RICD. Our findings suggest that co-signaling proteins like TIM-3 and CEACAM1 can alter RICD sensitivity at different stages of the effector T cell response, with important implications for checkpoint blockade therapy.


Assuntos
Antígenos CD/metabolismo , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Humanos , Ativação Linfocitária/imunologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
14.
Cell Mol Immunol ; 18(1): 194-205, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659245

RESUMO

The adaptive immune response relies on specific apoptotic programs to maintain homeostasis. Conventional effector T cell (Tcon) expansion is constrained by both forkhead box P3 (FOXP3)+-regulatory T cells (Tregs) and restimulation-induced cell death (RICD), a propriocidal apoptosis pathway triggered by repeated stimulation through the T-cell receptor (TCR). Constitutive FOXP3 expression protects Tregs from RICD by suppressing SLAM-associated protein (SAP), a key adaptor protein that amplifies TCR signaling strength. The role of transient FOXP3 induction in activated human CD4 and CD8 Tcons remains unresolved, but its expression is inversely correlated with acquired RICD sensitivity. Here, we describe a novel role for FOXP3 in protecting human Tcons from premature RICD during expansion. Unlike FOXP3-mediated protection from RICD in Tregs, FOXP3 protects Tcons through a distinct mechanism requiring de novo transcription that does not require SAP suppression. Transcriptome profiling and functional analyses of expanding Tcons revealed that FOXP3 enhances expression of the SLAM family receptor CD48, which in turn sustains basal autophagy and suppresses pro-apoptotic p53 signaling. Both CD48 and FOXP3 expression reduced p53 accumulation upon TCR restimulation. Furthermore, silencing FOXP3 expression or blocking CD48 decreased the mitochondrial membrane potential in expanding Tcons with a concomitant reduction in basal autophagy. Our findings suggest that FOXP3 governs a distinct transcriptional program in early-stage effector Tcons that maintains RICD resistance via CD48-dependent protective autophagy and p53 suppression.


Assuntos
Antígeno CD48/metabolismo , Morte Celular , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T Reguladores/imunologia , Apoptose , Autofagia , Antígeno CD48/genética , Fatores de Transcrição Forkhead/genética , Humanos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
bioRxiv ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341788

RESUMO

RNA-based vaccines against SARS-CoV-2 are critical to limiting COVID-19 severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. We used single-cell technologies to identify and characterized antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 in longitudinal samples from a cohort of healthy donors. Mass cytometry and machine learning pinpointed a novel expanding, population of antigen-specific non-canonical memory CD4 + and CD8 + T cells. B cell sequencing suggested progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlated with eventual SARS-CoV-2 IgG and a donor lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms reveal an antigen-specific cellular basis of RNA vaccine-based immunity. ONE SENTENCE SUMMARY: Single-cell profiling reveals the cellular basis of the antigen-specific response to the BNT162b2 SARS-CoV-2 RNA vaccine.

16.
Front Mol Biosci ; 6: 106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681794

RESUMO

Restimulation-induced cell death (RICD) is an apoptotic pathway triggered in activated effector T cells after T cell receptor (TCR) re-engagement. RICD operates at the peak of the immune response to ensure T cell expansion remains in check to maintain immune homeostasis. Understanding the biochemical regulation of RICD sensitivity may provide strategies for tuning the magnitude of an effector T cell response. Metabolic reprogramming in activated T cells is not only critical for T cell differentiation and effector functions, but also influences apoptosis sensitivity. We previously demonstrated that aerobic glycolysis correlates with optimum RICD sensitivity in human effector CD8 T cells. However, metabolic programming in CD4 T cells has not been investigated in this context. We employed a pharmacological approach to explore the effects of fatty acid and glycolytic metabolism on RICD sensitivity in primary human CD4 T cells. Blockade of fatty acid synthase (FASN) with the compound C75 significantly protected CD4 effector T cells from RICD, suggesting that fatty acid biosynthesis contributes to RICD sensitivity. Interestingly, sphingolipid synthesis and fatty acid oxidation (FAO) were dispensable for RICD. Disruption of glycolysis did not protect CD4 T cells from RICD unless glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymatic activity was targeted specifically, highlighting important differences in the metabolic control of RICD in effector CD4 vs. CD8 T cell populations. Moreover, C75 treatment protected effector CD4 T cells derived from naïve, effector memory, and central memory T cell subsets. Decreased RICD in C75-treated CD4 T cells correlated with markedly reduced FAS ligand (FASL) induction and a Th2-skewed phenotype, consistent with RICD-resistant CD4 T cells. These findings highlight FASN as a critical metabolic potentiator of RICD in human effector CD4 T cells.

17.
Cancer Lett ; 408: 190-196, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866092

RESUMO

An effective adaptive immune response hinges on the rapid clonal expansion of T cells in response to antigen. The sensitivity of these T cells to programmed cell death (i.e. apoptosis) is carefully calibrated at various stages to ensure a robust yet measured reaction that resolves without inflicting unintended damage to host tissues. To meet bioenergetic demands associated with vigorous proliferation, acquisition of effector functions, and memory formation, T cells also undergo dynamic changes in their metabolism at every stage of this response. In this review, we focus on relatively recent studies that illuminate intimate links between metabolic programs and apoptosis sensitivity in T cells. We then examine how these connections ultimately influence T cell survival and function within the metabolically taxing environs of the tumor microenvironment.


Assuntos
Apoptose , Reprogramação Celular , Metabolismo Energético , Memória Imunológica , Linfócitos T/imunologia , Animais , Diferenciação Celular , Humanos , Transdução de Sinais , Linfócitos T/metabolismo
18.
Cell Death Discov ; 3: 17031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580175

RESUMO

CD8+ central memory (CM) and effector memory (EM) T-cell subsets exhibit well-established differences in proliferative and protective capacity after infectious challenge. However, their relative sensitivity to apoptosis has been largely overlooked, despite the importance of programmed cell death in regulating effector T-cell homeostasis. Here we demonstrate that primary human effector T cells derived from the CD8+ EM subset exhibit significantly higher sensitivity to cytokine withdrawal-induced cell death (CWID), a critical intrinsic apoptosis program responsible for culling cells once an infection is cleared and interleukin-2 (IL-2) levels diminish. Interestingly, we found no differences in the expression of IL-2 or IL-2 receptor components in cells originating from either subset. Relative to CM-derived effectors, however, EM-derived T cells displayed more mitochondrial instability and greater caspase activity. Indeed, we found that heightened CWID sensitivity in EM-derived effectors coincided with higher expression of the pro-apoptotic Bcl-2 family protein BIM, both at steady state and with de novo induction following withdrawal of exogenous IL-2. These data point to 'imprinted' differences in BIM protein regulation, preserved by CD8+ CM and EM progeny, which govern their relative sensitivity to CWID. In addition, we detected a burst of autophagy after IL-2 withdrawal, which was better maintained in CM-derived T cells. Both subsets showed increased, equivalent CWID sensitivity upon treatment with autophagy inhibitors, suggesting sustained autophagy could preferentially protect CM-derived T cells from apoptosis. These findings offer new insight into how CM CD8+ T cells display superior effector cell expansion and more persistent memory responses in vivo relative to EM-derived T cells, based in part on decreased CWID sensitivity.

20.
Nat Genet ; 49(8): 1192-1201, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628108

RESUMO

Few monogenic causes for severe manifestations of common allergic diseases have been identified. Through next-generation sequencing on a cohort of patients with severe atopic dermatitis with and without comorbid infections, we found eight individuals, from four families, with novel heterozygous mutations in CARD11, which encodes a scaffolding protein involved in lymphocyte receptor signaling. Disease improved over time in most patients. Transfection of mutant CARD11 expression constructs into T cell lines demonstrated both loss-of-function and dominant-interfering activity upon antigen receptor-induced activation of nuclear factor-κB and mammalian target of rapamycin complex 1 (mTORC1). Patient T cells had similar defects, as well as low production of the cytokine interferon-γ (IFN-γ). The mTORC1 and IFN-γ production defects were partially rescued by supplementation with glutamine, which requires CARD11 for import into T cells. Our findings indicate that a single hypomorphic mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Dermatite Atópica/genética , Mutação em Linhagem Germinativa , Guanilato Ciclase/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Dermatite Atópica/imunologia , Feminino , Genes Dominantes , Glutamina/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Antígenos de Histocompatibilidade Menor/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Linhagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA