RESUMO
We disclose for the first time a facile synthetic methodology for the preparation of multicolor carbon dots (CDs) from a single source barring any chromatographic separations. This was achieved via sequential intraparticle cross-linking of surface abundant carboxylic acid groups on the CDs synthesized from a precursor to control their photoluminescence (PL) spectra as well as affect their degree of cellular internalization in cancer cells. The change in PL spectra with sequential cross-linking was projected by theoretical density functional theory (DFT) studies and validated by multiple characterization tools such as X-ray photoelectron spectroscopy (XPS), PL spectroscopy, ninhydrin assay, etc. The variation in cellular internalization of these cross-linked CDs was demonstrated using inhibitor assays, confocal microscopy, and flow cytometry. We supplemented our findings with high-resolution dark-field imaging to visualize and confirm the colocalization of these CDs into distinct intracellular compartments. Finally, to prove the surface-state controlled PL mechanisms of these cross-linked CDs, we fabricated a triple-channel sensor array for the identification of different analytes including metal ions and biologically relevant proteins.
Assuntos
Materiais Biocompatíveis/farmacocinética , Carbono/farmacocinética , Reagentes de Ligações Cruzadas/farmacocinética , Corantes Fluorescentes/farmacocinética , Luminescência , Pontos Quânticos/química , Materiais Biocompatíveis/química , Carbono/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Teoria da Densidade Funcional , Corantes Fluorescentes/química , Humanos , Teste de Materiais , Estrutura Molecular , Imagem Óptica , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Propriedades de SuperfícieRESUMO
Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances, largely polysaccharides. Multiple types of extracellular polymeric substances can be produced by a single bacterial strain. The distinct polymer components of biofilms are known to provide chemical protection, but little is known about how distinct extracellular polysaccharides may also protect biofilms against mechanical stresses such as shear or phagocytic engulfment. Decades-long infections of Pseudomonas. aeruginosa biofilms in the lungs of cystic fibrosis patients are natural models for studies of biofilm fitness under pressure from antibiotics and the immune system. In cystic fibrosis infections, production of the extracellular polysaccharide alginate has long been known to increase with time and to chemically protect biofilms. More recently, it is being recognized that chronic cystic fibrosis infections also evolve to increase production of another extracellular polysaccharide, Psl; much less is known about Psl's protective benefits to biofilms. We use oscillatory bulk rheology, on biofilms grown from longitudinal clinical isolates and from genetically-manipulated lab strains, to show that increased Psl stiffens biofilms and increases biofilm toughness, which is the energy cost to cause the biofilm to yield mechanically. Further, atomic force microscopy measurements reveal greater intercellular cohesion for higher Psl expression. Of the three types of extracellular polysaccharides produced by P. aeruginosa, only Psl increases the stiffness. Stiffening by Psl requires CdrA, a protein that binds to mannose groups on Psl and is a likely cross-linker for the Psl components of the biofilm matrix. We compare the elastic moduli of biofilms to the estimated stresses exerted by neutrophils during phagocytosis, and infer that increased Psl could confer a mechanical protection against phagocytic clearance.