RESUMO
Pancreatic cancer (PC) is one of the leading causes of cancer death in Western societies. The absence of specific symptoms, late diagnosis and the resistance towards chemotherapy result in significant treatment difficulties. As such, it is important to find more effective therapeutic agents for the treatment of PC. Helicteres hirsuta Lour. (H. hirsuta) has been traditionally used in many countries for the treatment of various ailments, indicating that it contains potential therapeutic agents. This study aimed to derive different fractions from the saponin-enriched extract of H. hirsuta stem using RP-HPLC and examine the in vitro anti-pancreatic cancer activity of the derived fractions (F0-F5). With the exception of F0, the five fractions (F1-F5) possessed strong inhibitory activity against PC cells at IC50 values of 3.11-17.12 µg/mL. The flow cytometry assays revealed the active fractions caused cell cycle arrest at S phase and promoted apoptosis in MIAPaCa-2 PC cells. The LC/MS analysis revealed that the isolated fractions contained bioactive compounds, such as caffeic acid, rosmarinic acid, sagerinic acid, usnic acid, cucurbitacins and absinthin. It can be concluded that the fractions isolated from H. hirsuta stem exhibit potent in vitro anti-pancreatic cancer activity and thus warrant further in vivo studies to assess their activity against PC followed by isolation of individual bioactive compounds and the evaluation of their anti-pancreatic cancer activity.
Assuntos
Malvaceae/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Neoplasias Pancreáticas/metabolismo , Fitoterapia/métodos , Saponinas/farmacologiaRESUMO
Catharanthus roseus (L.) G. Don (C. roseus) is a well-known medicinal plant for its source of alkaloids solely found in the leaves. Other parts including the root are usually discarded after the alkaloid extraction. This study sought to investigate phytochemical profiles, antioxidant, antimicrobial and cytotoxic properties of the C. roseus root extract (RE) and its two sub-fractions including saponin-enriched (SE) and aqueous (AQ) fractions. The results showed that the RE was a rich source of saponins (1744.44 mg ESE/g) and phenolics (51.27 mg GAE/g), which comprised of gallic acid (25.74 mg/g), apigenin (1.45 mg/g) and kaempferol (1.58 mg/g). The SE fraction was enriched with 31% of saponins and 63% of phenolics higher than those of the RE; whereas the concentrations of saponins and phenolics of the AQ fraction were lower than those of the RE by 40% and 74%, respectively. The content of gallic acid in the SE fraction was 1.4-fold and 1.5-fold higher than those of the RE or AQ fraction, respectively. The SE fraction demonstrated potent antioxidant capacity, which was significantly higher than the RE or AQ fraction, and also exhibited strong anti-proliferative activity against 11 cancer cell lines including A2780 (ovarian), H460 (lung), A431 (skin), MIA PaCa-2 (pancreas), Du145 (prostate), HT29 (colon), MCF-7 (breast), BE2-C (neuroblastoma), SJ-G2, U87 and SMA (glioblastoma) with low GI50 values (≤ 2.00 µg/mL). The SE fraction was also shown to effectively inhibit the growth of both bacteria (Escherichia coli, Enterobacter aerogenes and Staphylococccus lugdunensis) and fungi (Candida albicans and Aspergillus niger). These findings warrant further investigation to isolate major compounds from the SE fraction and further test their antioxidant, anticancer and antimicrobial activities.
Assuntos
Catharanthus/química , Catharanthus/metabolismo , Extratos Vegetais/farmacologia , Alcaloides/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Fenóis , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/metabolismo , Raízes de Plantas/metabolismo , Plantas Medicinais/metabolismo , SaponinasRESUMO
Helicteres hirsuta Lour. (H. hirsuta) has been considered as a herbal medicine for the treatment of malaria and diabetes but limited studies have been conducted on its anticancer and antibacterial properties. In this study, the in vitro antibacterial and anticancer properties of the leaf and stem extracts and their two sub-fractions (aqueous and saponin-enriched butanol fractions) prepared from H. hirsuta were elucidated. MTT and CCK-8 assays were employed to assess their in vitro anticancer properties against various cancer cell lines. The antibacterial activity was assessed using the disc diffusion method and minimum inhibitory concentration (MIC) values were determined. The results revealed that the saponin-enriched fractions from H. hirsuta leaves and stems showed the highest antibacterial activity against E. coli (MIC values of 2.50 and 5.00 mg/mL, respectively) and S. lugdunensis (MIC values of 0.35 and 0.50 mg/mL, respectively). Importantly, these saponin-enriched fractions possessed strong anticancer activity in vitro towards a range of cancer cell lines including MIA PaCa-2 (pancreas); A2780 (ovarian); H460 (lung); A431 (skin); Du145 (prostate); HT29 (colon); MCF-7 (breast); SJ-G2, U87, SMA (glioblastoma) and BE2-C (neuroblastoma) at low doses (GI50 values of 0.36-11.17 µg/mL). They especially revealed potent anti-pancreatic cancer activity in vitro against MIA PaCa-2, BxPC-3 and CFPAC-1 cells with IC50 values of 1.80-6.43 µg/mL. This finding provides scientific evidence of the cytotoxic activity of the extracts prepared from H. hirsuta leaves and stems, and suggests further studies to isolate active compounds for development of new anticancer agents from these plant extracts.
Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Malvaceae/química , Malvaceae/metabolismo , Extratos Vegetais/uso terapêutico , Antibacterianos , Anticarcinógenos , Antioxidantes , Escherichia coli/efeitos dos fármacos , Humanos , Malvaceae/genética , Testes de Sensibilidade Microbiana , Fitoterapia/métodos , Folhas de Planta , Caules de Planta , Plantas Medicinais/química , Staphylococcus lugdunensis/efeitos dos fármacosRESUMO
In this paper we present a new method for finding the optimal path for pulling a ligand from the binding pocket using steered molecular dynamics (SMD). Scoring function is defined as the steric hindrance caused by a receptor to ligand movement. Then the optimal path corresponds to the minimum of this scoring function. We call the new method MSH (Minimal Steric Hindrance). Contrary to existing navigation methods, our approach takes into account the geometry of the ligand while other methods including CAVER only consider the ligand as a sphere with a given radius. Using three different target + receptor sets, we have shown that the rupture force Fmax and nonequilibrium work Wpull obtained based on the MSH method show a much higher correlation with experimental data on binding free energies compared to CAVER. Furthermore, Wpull was found to be a better indicator for binding affinity than Fmax. Thus, the new MSH method is a reliable tool for obtaining the best direction for ligand exiting from the binding site. Its combination with the standard SMD technique can provide reasonable results for ranking binding affinities using Wpull as a scoring function.
Assuntos
Técnicas de Química Analítica/métodos , Simulação de Dinâmica Molecular , Trombina/química , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , TermodinâmicaRESUMO
While amyloid-related diseases are at the center of intense research efforts, no feasible cure is currently available for these diseases. The experimental and computational techniques were used to study the ability of glyco-acridines to prevent lysozyme amyloid fibrillization in vitro. Fluorescence spectroscopy and atomic force microscopy have shown that glyco-acridines inhibit amyloid aggregation of lysozyme; the inhibition efficiency characterized by the half-maximal inhibition concentration IC50 was affected by the structure and concentration of the derivative. We next investigated relationship between the binding affinity and the inhibitory activity of the compounds. The semiempirical quantum PM6-DH+ method provided a good correlation pointing to the importance of quantum effects on the binding of glyco-acridine derivatives to lysozyme. The contribution of linkers may be explained by the valence bond theory. Our data provide a basis for the development of new small molecule inhibitors effective in therapy of amyloid-related diseases.
Assuntos
Acridinas/metabolismo , Amiloide/metabolismo , Muramidase/metabolismo , Acridinas/química , Amiloide/antagonistas & inibidores , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Amiloidose , Humanos , Muramidase/química , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
The lemon-scented tea tree (LSTT) is an Australian native herb and is a rich source of essential oil and phenolics. The ETHOS X extraction system is known as a commercial microwave-assisted extraction (MAE) system for extracting bioactive compounds from plant materials. This study investigated the influence of soaking time, radiation time, microwave power, and sample to solvent ratio on the extraction efficiency of polyphenols and antioxidant properties from lemon-scented tea tree leaves and optimized the extraction conditions using response surface methodology (RSM). The effectiveness of ETHOS X was further compared with ultrasound-assisted extraction (UAE) and shaking water bath (SWB) techniques. The results revealed that soaking time did not significantly affect the recovery of phenolics from the leaves (p > 0.05). Thus, soaking is not required for the ETHOS X extraction of polyphenols from LSTT leaves. RSM was successfully applied to explore the impact of ETHOS X extraction conditions and optimize the extraction conditions. Radiation time significantly affects the recovery yield of phenolics (p < 0.05) positively, whereas irradiation power and sample to solvent ratio adversely influenced the extraction yields of phenolics. The optimal ETHOS X extraction conditions were: radiation time of 60 min, irradiation power of 600 W, and sample to solvent ratio of 2 g/100 mL. Under these conditions, 119.21 ± 7.09 mg of phenolic, 85.31 ± 4.55 mg of flavonoids, and 137.51 ± 12.52 mg of proanthocyanidins can be extracted from a gram of dried LSTT leaves. In comparison with UAE and SWB, ETHOS X is not more effective for the extraction of phenolics than UAE and SWB. However, this technique can save half of the solvent volume compared to UAE and SWB techniques.
RESUMO
This data article indicates the in vitro cytotoxicity of kaempferol and gallic acid across different cancer cell lines including A2780 (ovarian), H460 (lung), A431 (skin), MIA PaCa-2 (pancreas), Du145 (prostate), HT29 (colon), MCF-7 (breast), BE2-C (neuroblastoma), SJ-G2, U87 and SMA (glioblastoma). The dataset showed that the inhibitory activity of kaempferol was comparatively stronger than gallic acid. Thereby, kaempferol is offered as a potent anticancer agent for further investigation and beneficial as a dietary supplement. The data within this article relates to the research article entitled "Screening phytochemical content, antioxidant, antimicrobial and cytotoxic activities of Catharanthus roseus (L.) G. Don stem extract and its fractions" (Pham et al., 2018).
RESUMO
The classical force field, which is compatible with the Amber force field 99SB, has been obtained for the interaction of Cu(II) with monomer and dimers of amyloid-ß peptides using the coordination where Cu(II) is bound to His6, His13 (or His14), and Asp1 with distorted planar geometry. The newly developed force field and molecular dynamics simulation were employed to study the impact of Cu(II) binding on structures and dynamics of Aß42 monomer and dimers. It was shown that in the presence of Cu(II) the ß content of monomer is reduced substantially compared with the wild-type Aß42 suggesting that, in accord with experiments, metal ions facilitate formation of amorphous aggregates rather than amyloid fibrils with cross-ß structures. In addition, one possible mechanism for amorphous assembly is that the Asp23-Lys28 salt bridge, which plays a crucial role in ß sheet formation, becomes more flexible upon copper ion binding to the Aß N-terminus. The simulation of dimers was conducted with the Cu(II)/Aß stoichiometric ratios of 1:1 and 1:2. For the 1:1 ratio Cu(II) delays the Aß dimerization process as observed in a number of experiments. The mechanism underlying this phenomenon is associated with slow formation of interchain salt bridges in dimer as well as with decreased hydrophobicity of monomer upon Cu-binding.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Cobre/química , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregados Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Eletricidade EstáticaRESUMO
The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace.