RESUMO
Expanded agriculture production is required to support the world's population but can impose substantial environmental and climate change costs, particularly with intensifying animal production and protein demand. Shifting from an animal- to a plant-based protein diet has numerous health benefits. Soybean (Glycine max [L.] Merr.) is a major source of protein for human food and animal feed; improved soybean protein content and amino acid composition could provide high-quality soymeal for animal feed, healthier human foods, and a reduced carbon footprint. Nonetheless, during the soybean genome evolution, a balance was established between the amount of seed protein, oil, and carbohydrate content, burdening the development of soybean cultivars with high proteins (HPs). We isolated 2 high-seed protein soybean mutants, HP1 and HP2, with improved seed amino acid composition and stachyose content, pointing to their involvement in controlling seed rebalancing phenomenon. HP1 encodes ß-conglycinin (GmCG-1) and HP2 encodes sucrose-binding protein (GmSBP-1), which are both highly expressed in soybean seeds. Mutations in GmSBP-1, GmCG-1, and the paralog GmCG-2 resulted in increased protein levels, confirming their role as general regulators of seed protein content, amino acid seed composition, and seed vigor. Biodiversity analysis of GmCG and GmSBP across 108 soybean accessions revealed haplotypes correlated with protein and seed carbohydrate content. Furthermore, our data revealed an unprecedented role of GmCG and GmSBP proteins in improving seed vigor, crude protein, and amino acid digestibility. Since GmSBP and GmCG are present in most seed plants analyzed, these genes could be targeted to improve multiple seed traits.
Assuntos
Antígenos de Plantas , Globulinas , Glycine max , Proteínas de Armazenamento de Sementes , Sementes , Proteínas de Soja , Sementes/genética , Sementes/metabolismo , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo , Globulinas/genética , Globulinas/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Mutação/genética , Proteínas de Grãos/metabolismo , Aminoácidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Identification and characterization of soybean germplasm and gene(s)/allele(s) for salt tolerance is an effective way to develop improved varieties for saline soils. Previous studies identified GmCHX1 (Glyma03g32900) as a major salt tolerance gene in soybean, and two main functional variations were found in the promoter region (148/150 bp insertion) and the third exon with a retrotransposon insertion (3.78 kb). In the current study, we identified four salt-tolerant soybean lines, including PI 483460B (Glycine soja), carrying the previously identified salt-sensitive variations at GmCHX1, suggesting new gene(s) or new functional allele(s) of GmCHX1 in these soybean lines. Subsequently, we conducted quantitative trait locus (QTL) mapping in a recombinant-inbred line population (Williams 82 (salt-sensitive) × PI 483460B) to identify the new salt tolerance loci/alleles. A new locus, qSalt_Gm18, was mapped on chromosome 18 associated with leaf scorch score. Another major QTL, qSalt_Gm03, was identified to be associated with chlorophyll content ratio and leaf scorch score in the same chromosomal region of GmCHX1 on chromosome 3. Novel variations in a STRE (stress response element) cis-element in the promoter region of GmCHX1 were found to regulate the salt-inducible expression of the gene in these four newly identified salt-tolerant lines including PI 483460B. This new allele of GmCHX1 with salt-inducible expression pattern provides an energy cost efficient (conditional gene expression) strategy to protect soybean yield in saline soils without yield penalty under non-stress conditions. Our results suggest that there might be no other major salt tolerance locus similar to GmCHX1 in soybean germplasm, and further improvement of salt tolerance in soybean may rely on gene-editing techniques instead of looking for natural variations.
Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/genética , Tolerância ao Sal/genética , Regiões Promotoras Genéticas/genética , Solo , Expressão GênicaRESUMO
Plant parasitic nematodes are a major yield-limiting factor of soybean in the United States and Canada. It has been indicated that soybean cyst nematode (SCN; Heterodera glycines Ichinohe) and reniform nematode (RN; Rotylenchulus reniformis Linford and Oliveira) resistance could be genetically related. For many years, fragmentary data have shown this relationship. This report evaluates RN reproduction on 418 plant introductions (PIs) selected from the U.S. Department of Agriculture Soybean Germplasm Collection with reported SCN resistance. The germplasm was divided into two tests of 214 PIs reported as resistant and 204 PIs reported as moderately resistant to SCN. The defining and reporting of RN resistance changed several times in the last 30 years, causing inconsistencies in RN resistance classification among multiple experiments. Comparison of four RN resistance classification methods was performed: (i) ≤10% as compared with the susceptible check, (ii) using normalized reproduction index (RI) values, and using (iii) transformed data log10(x), and (iv) transformed data log10(x + 1) in an optimal univariate k-means clustering analysis. The method of transformed data log10(x) was selected as the most accurate for classification of RN resistance. Among 418 PIs with reported SCN resistance, the log10(x) method grouped 59 PIs (15%) as resistant and 130 PIs (31%) as moderately resistant to RN. Genotyping of a subset of the most resistant PIs to both nematode species revealed their strong correlation with rhg1-a allele. This research identified genotypes with resistance to two nematode species and potential new sources of RN resistance that could be valuable to breeders in developing resistant cultivars.
Assuntos
Cistos , Tylenchoidea , Animais , Genótipo , Doenças das Plantas/parasitologia , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/genéticaRESUMO
Aluminium (Al) toxicity inhibits soybean root growth, leading to insufficient water and nutrient uptake. Two soybean lines ('Magellan' and PI 567731) were identified differing in Al tolerance, as determined by primary root length ratio, total root length ratio, and root tip number ratio under Al stress. Serious root necrosis was observed in PI 567731, but not in Magellan under Al stress. An F8 recombinant inbred line population derived from a cross between Magellan and PI 567731 was used to map the quantitative trait loci (QTL) for Al tolerance. Three QTL on chromosomes 3, 13, and 20, with tolerant alleles from Magellan, were identified. qAl_Gm13 and qAl_Gm20 explained large phenotypic variations (13-27%) and helped maintain root elongation and initiation under Al stress. In addition, qAl_Gm13 and qAl_Gm20 were confirmed in near-isogenic backgrounds and were identified to epistatically regulate Al tolerance via internal detoxification instead of Al3+ exclusion. Phylogenetic and pedigree analysis identified the tolerant alleles of both loci derived from the US ancestral line, A.K.[FC30761], originally from China. Our results provide novel genetic resources for breeding Al-tolerant soybean and suggest that internal detoxification contributes to soybean tolerance to excessive soil Al.
Assuntos
Glycine max , Locos de Características Quantitativas , Alumínio/toxicidade , Mapeamento Cromossômico , Fenótipo , Filogenia , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Glycine max/genéticaRESUMO
KEY MESSAGE: The qSCN10 locus with broad-spectrum SCN resistance was fine-mapped to a 379-kb region on chromosome 10 in soybean accession PI 567516C. Candidate genes and potential application benefits of this locus were discussed. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pests of soybean, causing significant yield losses worldwide every year. Genetic resistance has been the major strategy to control this pest. However, the overuse of the same genetic resistance derived primarily from PI 88788 has led to the genetic shifts in nematode populations and resulted in the reduced effectiveness in soybean resistance to SCN. Therefore, novel genetic resistance resources, especially those with broad-spectrum resistance, are needed to develop new resistant cultivars to cope with the genetic shifts in nematode populations. In this study, a quantitative trait locus (QTL) qSCN10 previously identified from a soybean landrace PI 567516C was confirmed to confer resistance to multiple SCN HG Types. This QTL was further fine-mapped to a 379-kb region. There are 51 genes in this region. Four of them are defense-related and were regulated by SCN infection, suggesting their potential role in mediating resistance to SCN. The phylogenetic and haplotype analyses of qSCN10 as well as other information indicate that this locus is different from other reported resistance QTL or genes. There was no yield drag or other unfavorable traits associated with this QTL when near-isogenic lines with and without qSCN10 were tested in a SCN-free field. Therefore, our study not only provides further insight into the genetic basis of soybean resistance to SCN, but also identifies a novel genetic resistance resource for breeding soybean for durable, broad-spectrum resistance to this pest.
Assuntos
Resistência à Doença/genética , Marcadores Genéticos , Glycine max/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas , Tylenchoidea/fisiologia , Animais , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Ligação Genética , Filogenia , Doenças das Plantas/parasitologia , Glycine max/imunologia , Glycine max/parasitologiaRESUMO
KEY MESSAGE: The qSCN18 QTL from PI 56756C was confirmed and fine-mapped to improve soybean resistance to the SCN population HG Type 2.5.7 using near-isogenic lines carrying recombination crossovers within the QTL region. The QTL underlying resistance was fine-mapped to a 166-Kbp region on chromosome 18, and the candidate genes were selected based on genomic analyses. Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) is the most devastating pathogen of soybean. Understanding the genetic basis of SCN resistance is crucial for managing this parasite in the field. Two major loci, rhg1 and Rhg4, were previously characterized as valuable resources for SCN resistance. However, their continuous use has caused shifts in the virulence of SCN populations, which can overcome the resistance conferred by these two major loci. Reduced effectiveness became a major concern in the soybean industry due to continuous use of rhg1 for decades. Thus, it is imperative to identify sources of SCN resistance for durable SCN management. A novel QTL qSCN18 was identified in PI567516C. To fine-map qSCN18 and identify resistance genes, a large backcross population was developed. Nineteen near-isogenic lines (NILs) carrying recombination crossovers within the QTL region were identified. The first phase of fine-mapping narrowed the QTL region to 549-Kbp, whereas the second phase confined the region to 166-Kbp containing 23 genes. Two flanking markers, MK-1 and MK-6, were developed and validated to detect the presence of the qSCN18 resistance allele. Haplotype analysis clustered the fine-mapped qSCN18 region from PI 567516C with the cqSCN-007 locus previously mapped in the wild soybean accession PI 468916. The NILs were developed to further characterize the causal gene(s) harbored in this QTL. This study also confirmed the previously identified qSCN18. The results will facilitate marker-assisted selection (MAS) introducing the qSCN18 locus from PI 567516C into high-yielding soybean cultivars with durable resistance to SCN.
Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Tylenchoidea/fisiologia , Animais , Mapeamento Cromossômico , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Polimorfismo Genético , Glycine max/parasitologiaRESUMO
KEY MESSAGE: Soybean acyl-ACP thioesterase gene family have been characterized; GmFATA1A mutants were discovered to confer high oleic acid, while GmFATB mutants presented low palmitic and high oleic acid seed content. Soybean oil stability and quality are primarily determined by the relative proportions of saturated versus unsaturated fatty acids. Commodity soybean typically contains 11% palmitic acid, as the primary saturated fatty acids. Reducing palmitic acid content is the principal approach to minimize the levels of saturated fatty acids in soybean. Though high palmitic acid enhances oxidative stability of soybean oil, it is negatively correlated with oil and oleic acid content and can cause coronary heart diseases for humans. For plants, acyl-acyl carrier protein (ACP) thioesterases (TEs) are a group of enzymes to hydrolyze acyl group and release free fatty acid from plastid. Among them, GmFATB1A has become the main target to genetically reduce the palmitic acid content in soybean. However, the role of members in soybean acyl-ACP thioesterase gene family is largely unknown. In this study, we characterized two classes of TEs, GmFATA, and GmFATB in soybean. We also denominated two GmFATA members and discovered six additional members that belong to GmFATB gene family through phylogenetic, syntenic, and in silico analysis. Using TILLING-by-Sequencing+, we identified an allelic series of mutations in five soybean acyl-ACP thioesterase genes, including GmFATA1A, GmFATB1A, GmFATB1B, GmFATB2A, and GmFATB2B. Additionally, we discovered mutations at GmFATA1A to confer high oleic acid (up to 34.5%) content, while mutations at GmFATB presented low palmitic acid (as low as 5.6%) and high oleic acid (up to 36.5%) phenotypes. The obtained soybean mutants with altered fatty acid content can be used in soybean breeding program for improving soybean oil composition traits.
Assuntos
Ácidos Graxos/química , Glycine max/genética , Proteínas de Plantas/genética , Óleo de Soja/química , Tioléster Hidrolases/genética , Família Multigênica , Ácido Oleico , Ácido Palmítico , Filogenia , Melhoramento Vegetal , Sementes/química , Glycine max/enzimologiaRESUMO
KEY MESSAGE: A whole-genome resequencing-derived SNP dataset identified six quantitative trait loci (QTL) significantly associated with colonization of soybean by an arbuscular mycorrhizal fungus (Rhizophagus intraradices). Candidate genes identified in these QTL regions include homologs to known nodulin protein families and other symbiosis-specific genes. Arbuscular mycorrhizal fungi (AMF) form associations with over 80% of all terrestrial plant species and assist their host plants by increasing their nutrient uptake, drought tolerance, and resilience against pathogens and pests. Genotypic variation of crop plants to AMF colonization has been identified in crops, including soybean; however, the genetics controlling levels of AMF colonization in soybean are unknown. The overall goal of our study was to identify genomic regions associated with mycorrhizal colonization in soybean using genome-wide association analysis. A diverse panel of 350 exotic soybean genotypes inoculated with Rhizophagus intraradices were microscopically evaluated for root colonization using a modified gridline intersect method. Root colonization differed significantly (P < 0.001) among genotypes and ranged from 11 to 70%. A whole-genome resequencing-derived SNP dataset identified six quantitative trait loci (QTL) significantly associated with R. intraradices colonization that explained 24% of the phenotypic variance. Candidate genes identified in these QTL regions include homologs to known nodulin protein families and other symbiosis-specific genes. The results showed there was a significant genetic component to the level of colonization by R. intraradices in soybean. This information may be useful in the development of AMF-sensitive soybean cultivars to enhance nutrient uptake, drought tolerance, and disease resistance in the crop.
Assuntos
Glycine max/genética , Micorrizas/genética , Locos de Características Quantitativas , Simbiose/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Glycine max/metabolismo , Glycine max/microbiologia , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Salinity is an abiotic stress that negatively affects soybean [Glycine max (L.) Merr.] seed yield. Although a major gene for salt tolerance was identified and consistently mapped to chromosome (Chr.) 3 by linkage mapping studies, it does not fully explain genetic variability for tolerance in soybean germplasm. In this study, a genome-wide association study (GWAS) was performed to map genomic regions for salt tolerance in a diverse panel of 305 soybean accessions using a single nucleotide polymorphism (SNP) dataset derived from the SoySNP50K iSelect BeadChip. A second GWAS was also conducted in a subset of 234 accessions using another 3.7 M SNP dataset derived from a whole-genome resequencing (WGRS) study. In addition, three gene-based markers (GBM) of the known gene, Glyma03g32900, on Chr. 3 were also integrated into the two datasets. Salt tolerance among soybean lines was evaluated by leaf scorch score (LSS), chlorophyll content ratio (CCR), leaf sodium content (LSC), and leaf chloride content (LCC). RESULTS: For both association studies, a major locus for salt tolerance on Chr. 3 was confirmed by a number of significant SNPs, of which three gene-based SNP markers, Salt-20, Salt14056 and Salt11655, had the highest association with all four traits studied. Also, additional genomic regions on Chrs. 1, 8, and 18 were found to be associated with various traits measured in the second GWAS using the WGRS-derived SNP dataset. CONCLUSIONS: A region identified on Chr. 8 was identified to be associated with all four traits and predicted as a new minor locus for salt tolerance in soybean. The candidate genes harbored in this minor locus may help reveal the molecular mechanism involved in salt tolerance and to improve tolerance in soybean cultivars. The significant SNPs will be useful for marker-assisted selection for salt tolerance in soybean breeding programs.
Assuntos
Estudo de Associação Genômica Ampla , Glycine max/genética , Tolerância ao Sal/genética , Mapeamento Cromossômico , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Locos de Características QuantitativasRESUMO
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Assuntos
Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Tylenchoidea/patogenicidade , Animais , Sequência de Bases , Feminino , Loci Gênicos , Genoma de Planta , Haplótipos , Doenças das Plantas/parasitologia , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Glycine max/parasitologiaRESUMO
KEY MESSAGE: Two novel QTL for resistance to Pythium ultimum var. ultimum were identified in soybean using an Illumina SNP Chip and whole genome re-sequencing. Pythium ultimum var. ultimum is one of numerous Pythium spp. that causes severe pre- and post-emergence damping-off of seedlings and root rot of soybean [Glycine max (L.) Merr.]. The objective of this research was to identify quantitative trait loci (QTL) for resistance to P. ultimum var. ultimum in a recombinant inbred line population derived from a cross of 'Magellan' (moderately resistant) and PI 438489B (susceptible). Two different mapping approaches were utilized: the universal soybean linkage panel (USLP 1.0) and the bin map constructed from whole genome re-sequencing (WGRS) technology. Two genomic regions associated with variation in three disease-related parameters were detected using both approaches, with the bin map providing higher resolution. Using WGRS, the first QTL were mapped within a 350-kbp region on Chr. 6 and explained 7.5-13.5% of the phenotypic variance. The second QTL were positioned in a 260-kbp confidence interval on Chr. 8 and explained 6.3-16.8% of the phenotypic variation. Candidate genes potentially associated with disease resistance were proposed. High-resolution genetic linkage maps with a number of significant SNP markers could benefit marker-assisted breeding and dissection of the molecular mechanisms underlying soybean resistance to Pythium damping-off in 'Magellan.' Additionally, the outputs of this study may encourage more screening of diverse soybean germplasm and utilization of genome-wide association studies to understand the genetic basis of quantitative disease resistance.
Assuntos
Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Pythium/patogenicidade , Glycine max/microbiologiaRESUMO
The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean.
Assuntos
Mapeamento Cromossômico , Genoma de Planta/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Óleo de Soja/metabolismo , Sacarose/metabolismo , Mapeamento Cromossômico/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Análise de Sequência de DNA , Glycine max/metabolismoRESUMO
KEY MESSAGE: The confirmation of a major locus associated with salt tolerance and mapping of a new locus, which could be beneficial for improving salt tolerance in soybean. Breeding soybean for tolerance to high salt conditions is important in some regions of the USA and world. Soybean cultivar Fiskeby III (PI 438471) in maturity group 000 has been reported to be highly tolerant to multiple abiotic stress conditions, including salinity. In this study, a mapping population of 132 F2 families derived from a cross of cultivar Williams 82 (PI 518671, moderately salt sensitive) and Fiskeby III (salt tolerant) was analyzed to map salt tolerance genes. The evaluation for salt tolerance was performed by analyzing leaf scorch score (LSS), chlorophyll content ratio (CCR), leaf sodium content (LSC), and leaf chloride content (LCC) after treatment with 120 mM NaCl under greenhouse conditions. Genotypic data for the F2 population were obtained using the SoySNP6K Illumina Infinium BeadChip assay. A major allele from Fiskeby III was significantly associated with LSS, CCR, LSC, and LCC on chromosome (Chr.) 03 with LOD scores of 19.1, 11.0, 7.7 and 25.6, respectively. In addition, a second locus associated with salt tolerance for LSC was detected and mapped on Chr. 13 with an LOD score of 4.6 and an R 2 of 0.115. Three gene-based polymorphic molecular markers (Salt-20, Salt14056 and Salt11655) on Chr.03 showed a strong predictive association with phenotypic salt tolerance in the present mapping population. These molecular markers will be useful for marker-assisted selection to improve salt tolerance in soybean.
Assuntos
Glycine max/genética , Glycine max/fisiologia , Tolerância ao Sal/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.
Assuntos
Glycine max/genética , Ácido Oleico/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Soja/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Genoma de Planta , Mutação , Ácido Oleico/metabolismo , Locos de Características Quantitativas , Proteínas de Soja/metabolismoRESUMO
KEY MESSAGE: A major novel quantitative disease resistance locus, qRfg_Gm06, for Fusarium graminearum was genetically mapped to chromosome 6. Genomic-assisted haplotype analysis within this region identified three putative candidate genes. Fusarium graminearum causes seed, root rot, and seedling damping-off in soybean which contributes to reduced stands and yield. A cultivar Magellan and PI 567516C were identified with low and high levels of partial resistance to F. graminearum, respectively. Quantitative disease resistance loci (QDRL) were mapped with 241 F7:8 recombinant inbred lines (RILs) derived from a cross of Magellan × PI 567516C. Phenotypic evaluation for resistance to F. graminearum used the rolled towel assay in a randomized incomplete block design. The genetic map was constructed from 927 polymorphic single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. One major QDRL qRfg_Gm06 was detected and mapped to chromosome 6 with a LOD score of 20.3 explaining 40.2% of the total phenotypic variation. This QDRL was mapped to a ~400 kb genomic region of the Williams 82 reference genome. Genome mining of this region identified 14 putative candidate disease resistance genes. Haplotype analysis of this locus using whole genome re-sequencing (WGRS) of 106 diverse soybean lines narrowed the list to three genes. A SNP genotyping Kompetitive allele-specific PCR (KASP) assay was designed for one of the genes and was validated in a subset of the RILs and all 106 diverse lines.
Assuntos
Resistência à Doença/genética , Fusarium , Glycine max/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Genótipo , Haplótipos , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Glycine max/microbiologiaRESUMO
BACKGROUND: Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germplasm, we selected soybean cultivars based on the year of commercialization, geographical region and maturity group and resequenced their genomes. RESULTS: We resequenced the genomes of 28 Brazilian soybean cultivars with an average genome coverage of 14.8X. A total of 5,835,185 single nucleotide polymorphisms (SNPs) and 1,329,844 InDels were identified across the 20 soybean chromosomes, with 541,762 SNPs, 98,922 InDels and 1,093 CNVs that were exclusive to the 28 Brazilian cultivars. In addition, 668 allelic variations of 327 genes were shared among all of the Brazilian cultivars, including genes related to DNA-dependent transcription-elongation, photosynthesis, ATP synthesis-coupled electron transport, cellular respiration, and precursors of metabolite generation and energy. A very homogeneous structure was also observed for the Brazilian soybean germplasm, and we observed 41 regions putatively influenced by positive selection. Finally, we detected 3,880 regions with copy-number variations (CNVs) that could help to explain the divergence among the accessions evaluated. CONCLUSIONS: The large number of allelic and structural variations identified in this study can be used in marker-assisted selection programs to detect unique SNPs for cultivar fingerprinting. The results presented here suggest that despite the diversification of modern Brazilian cultivars, the soybean germplasm remains very narrow because of the large number of genome regions that exhibit low diversity. These results emphasize the need to introduce new alleles to increase the genetic diversity of the Brazilian germplasm.
Assuntos
Variação Genética , Genoma de Planta , Genômica , Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Brasil , Análise por Conglomerados , Variações do Número de Cópias de DNA , Genômica/métodos , Mutação INDEL , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Glycine max/classificaçãoRESUMO
KEY MESSAGE: Integration of genetic analysis, molecular biology, and genomic approaches drastically enhanced our understanding of genetic control of nematode resistance and provided effective breeding strategies in soybeans. Three nematode species, including soybean cyst (SCN, Heterodera glycine), root-knot (RKN, Meloidogyne incognita), and reniform (RN, Rotylenchulus reniformis), are the most destructive pests and have spread to soybean growing areas worldwide. Host plant resistance has played an important role in their control. This review focuses on genetic, genomic studies, and breeding efforts over the past two decades to identify and improve host resistance to these three nematode species. Advancements in genetics, genomics, and bioinformatics have improved our understanding of the molecular and genetic mechanisms of nematode resistance and enabled researchers to generate large-scale genomic resources and marker-trait associations. Whole-genome resequencing, genotyping-by-sequencing, genome-wide association studies, and haplotype analyses have been employed to map and dissect genomic locations for nematode resistance. Recently, two major SCN-resistant loci, Rhg1 and Rhg4, were cloned and other novel resistance quantitative trait loci (QTL) have been discovered. Based on these discoveries, gene-specific DNA markers have been developed for both Rhg1 and Rhg4 loci, which were useful for marker-assisted selection. With RKN resistance QTL being mapped, candidate genes responsible for RKN resistance were identified, leading to the development of functional single nucleotide polymorphism markers. So far, three resistances QTL have been genetically mapped for RN resistance. With nematode species overcoming the host plant resistance, continuous efforts in the identification and deployment of new resistance genes are required to support the development of soybean cultivars with multiple and durable resistance to these pests.
Assuntos
Resistência à Doença/genética , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/genética , Tylenchoidea , Animais , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genômica , Técnicas de Genotipagem , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
BACKGROUND: Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja. RESULTS: Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean. CONCLUSION: Rare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.
Assuntos
Mapeamento Cromossômico , Glycine max/genética , Raízes de Plantas/genética , Alelos , Genoma de Planta , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Glycine max/crescimento & desenvolvimentoRESUMO
KEY MESSAGE: We performed QTL analysis for SCN resistance in PI 437655 in two mapping populations, characterized CNV of Rhg1 through whole-genome resequencing and evaluated the effects of QTL pyramiding to enhance resistance. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most serious pests of soybean worldwide. PI 437655 has broader resistance to SCN HG types than PI 88788. The objectives of this study were to identify quantitative trait loci (QTL) underlying SCN resistance in PI 437655, and to evaluate the QTL for their contribution to SCN resistance. Two F6:7 recombinant inbred line populations, derived from cv. Williams 82 × PI 437655 and cv. Hutcheson × PI 437655 crosses, were evaluated for resistance to SCN HG types 1.2.5.7 (PA2), 0 (PA3), 1.3.5.6.7 (PA14), and 1.2.3.4.5.6.7 (LY2). The 1,536 SNP array was used to genotype the mapping populations and construct genetic linkage maps. Two significant QTL were consistently mapped on chromosomes (Chr.) 18 and 20 in these two populations. One QTL on Chr. 18, which corresponds to the known Rhg1 locus, contributed resistance to SCN HG types 1.2.5.7, 0, 1.3.5.6.7, and 1.2.3.4.5.6.7 (PA2, PA3, PA14, and LY2, respectively). Copy number variation (CNV) analysis by whole-genome resequencing showed that PI 437655 and PI 88788 had similar CNV at the Rhg1 locus. The QTL on Chr. 20 contributed resistance to SCN HG types 1.3.5.6.7 (PA14) and 1.2.3.4.5.6.7 (LY2). Evaluation of both QTL showed that pyramiding of Rhg1 and the QTL on Chr. 20 significantly improved the resistance to SCN HG types 1.3.5.6.7 (PA14) and 1.2.3.4.5.6.7 (LY2) in both populations. Our studies provided useful information for deploying PI 437655 as a donor for SCN resistance in soybean breeding through marker-assisted selection.
Assuntos
Variações do Número de Cópias de DNA , Resistência à Doença/genética , Glycine max/genética , Locos de Características Quantitativas , Tylenchoidea , Animais , Mapeamento Cromossômico , Feminino , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Glycine max/parasitologiaRESUMO
KEY MESSAGE: The QTLs controlling alpha-linolenic acid concentration from wild soybean were mapped on nine soybean chromosomes with various phenotypic variations. New QTLs for alpha-linolenic acid were detected in wild soybean. Alpha-linolenic acid (ALA) is a polyunsaturated fatty acid desired in human and animal diets. Some wild soybean (Glycine soja) genotypes are high in ALA. The objective of this study was to identify quantitative trait loci (QTLs) controlling ALA concentration in a wild soybean accession, PI483463. In total, 188 recombinant inbred lines of F5:6, F5:7, and F5:8 generations derived from a cross of wild soybean PI483463 (~15 % ALA) and cultivar Hutcheson (~9 % ALA) were planted in four environments. Harvested seeds were used to measure fatty acid concentration. Single nucleotide polymorphism markers of the universal soybean linkage panel (USLP 1.0) and simple sequence repeat markers were used for molecular genotyping. Nine putative QTLs were identified that controlled ALA concentration by model-based composite interval mapping and mapped to different soybean chromosomes. The QTLs detected in four environments explained 2.4-7.9 % of the total phenotypic variation (PV). Five QTLs, qALA5_3, qALA6_1, qALA14_1, qALA15_1, and qALA17_1, located on chromosomes 5, 6, 14, 15, and 17 were identified by model-based composite interval mapping and composite interval mapping in two individual environments. Among them, qALA6_1 showed the highest contribution to the PV with 10.0-10.2 % in two environments. The total detected QTLs for additive and epistatic effects explained 52.4 % of the PV for ALA concentration. These findings will provide useful information for understanding genetic structure and marker-assisted breeding programs to increase ALA concentration in seeds derived from wild soybean PI483463.