Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(4): 773-787, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38165831

RESUMO

Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.

2.
Biofabrication ; 16(3)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38810632

RESUMO

Systemic stem cell therapies hold promise for treating severe diseases, but their efficiency is hampered by limited migration of injected stem cells across vascular endothelium towards diseased tissues. Understanding transendothelial migration is crucial for improving therapy outcomes. We propose a novel 3Din vitrovessel model that aids to unravel these mechanisms and thereby facilitates stem cell therapy development. Our model simulates inflammation through cytokine diffusion from the tissue site into the vessel. It consists of a biofabricated vessel embedded in a fibrin hydrogel, mimicking arterial wall composition with smooth muscle cells and fibroblasts. The perfusable channel is lined with a functional endothelium which expresses vascular endothelial cadherin, provides an active barrier function, aligns with flow direction and is reconstructed byin situtwo-photon-microscopy. Inflammatory cytokine release (tumor necrosis factorα, stromal-derived factor (1) is demonstrated in both a transwell assay and the 3D model. In proof-of-principle experiments, mesoangioblasts, known as a promising candidate for a stem cell therapy against muscular dystrophies, are injected into the vessel model, showing shear-resistant endothelial adhesion under capillary-like flow conditions. Our 3Din vitromodel offers significant potential to study transendothelial migration mechanisms of stem cells, facilitating the development of improved stem cell therapies.


Assuntos
Migração Transendotelial e Transepitelial , Humanos , Transplante de Células-Tronco , Modelos Biológicos , Células-Tronco/citologia , Células-Tronco/metabolismo , Hidrogéis/química , Engenharia Tecidual , Movimento Celular
3.
Macromol Biosci ; 24(2): e2300162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37716014

RESUMO

Collagen-type I gels are widely used for the fabrication of 3D in vitro gingival models. Unfortunately, their long-term stability is low, which limits the variety of in vitro applications. To overcome this problem and achieve better hydrolytic stability of 3D gingival models, fibrin-based hydrogel blends with increased long-term stability in vitro are investigated. Two different fibrin-based hydrogels are tested: fibrin 2.5% (w/v) and fibrin 1% (w/v)/gelatin 5% (w/v). Appropriate numbers of primary human gingival fibroblasts (HGFs) and OKG4/bmi1/TERT (OKG) keratinocytes are optimized to achieve a homogeneous distribution of cells under the assumed 3D conditions. Both hydrogels support the viability of HGFs and the stability of the hydrogel over 28 days. In vitro cultivation at the air-liquid interface triggers keratinization of the epithelium and increases its thickness, allowing the formation of multiple tissue-like layers. The presence of HGFs in the hydrogel further enhances epithelial differentiation. In conclusion, a fibrin-based 3D gingival model mimics the histology of native gingiva in vitro and ensures its long-term stability in comparison with the previously reported collagen paralogs. These results open new perspectives for extending the period within which specific biological or pathological conditions of artificial gingival tissue can be evaluated.


Assuntos
Fibrina , Gengiva , Humanos , Colágeno , Colágeno Tipo I , Hidrogéis/farmacologia , Fibroblastos , Engenharia Tecidual/métodos
4.
Adv Healthc Mater ; 12(10): e2203302, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546310

RESUMO

Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.


Assuntos
Células Endoteliais , Trombina , Fibrina/química , Porosidade , Materiais Biocompatíveis/química , Colágeno/química , Engenharia Tecidual , Hidrogéis/química , Concentração de Íons de Hidrogênio
5.
Biomater Sci ; 10(19): 5552-5565, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35969162

RESUMO

Fibrin-gelatin hydrogel blends exhibit high potential for tissue engineering in vitro applications. However, the means to tailor these blends in order to control their properties, thus opening up a broad range of new target applications, have been insufficiently explored. We hypothesized that a controlled heat treatment of gelatin prior to blend synthesis enables control of hydrolytic swelling and shrinking, stiffness, and microstructural architecture of fibrin-gelatin based hydrogel blends while providing tremendous long-term stability. We investigated these hydrogel blends' compressive strength, in vitro degradation stability, and microstructure in order to test this hypothesis. In addition, we examined the gel's ability to support endothelial cell proliferation and stretching of encapsulated smooth muscle cells. This research showed that a controlled heat pretreatment of the gelatin component strongly influenced the stiffness, swelling, shrinking, and microstructural architecture of the final blends regardless of identical gelatin mass fractions. All blends offered high long-term hydrolytic stability. In conclusion, the results of this study open the possibility to use this technique in order to tune low-concentrated, open-porous fibrin-based hydrogels, even in long-term tissue engineering in vitro experiments.


Assuntos
Gelatina , Hidrogéis , Materiais Biocompatíveis/química , Fibrina/química , Gelatina/química , Temperatura Alta , Hidrogéis/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA