Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Chemistry ; 30(14): e202303242, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38050774

RESUMO

The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.


Assuntos
Imunoconjugados , Proteínas , Proteínas/química , Lisina/química , Aminoácidos , Anticorpos , Fenômenos Químicos
2.
Drug Dev Res ; 85(1): e22151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349254

RESUMO

Drug repurposing is used to propose new therapeutic perspectives. Here, we introduce "Drug Upgrade", that is, characterizing the mode of action of an old drug to generate new chemical entities and new therapeutics. We proposed a novel methodology covering target identification to pharmacology validation. As an old drug, we chose hydroxychloroquine (HCQ) for its well-documented clinical efficacy in lupus and its side effect, retinal toxicity. Using the Nematic Protein Organization Technique (NPOT®) followed by liquid chromatography-tandem mass spectrometry analyses, we identified myeloperoxidase (MPO) and alpha-crystallin ß chain (CRYAB) as primary and secondary targets to HCQ from lupus patients' peripheral blood mononuclear cells (PBMCs) and isolated human retinas. Surface plasmon resonance (SPR) and enzymatic assays confirmed the interaction of HCQ with MPO and CRYAB. We synthesized INS-072 a novel analog of HCQ that increased affinity for MPO and decreased binding to CRYAB compared to HCQ. INS-072 delayed cutaneous eruption significantly compared to HCQ in the murine MRL/lpr model of spontaneous lupus and prevents immune complex vasculitis in mice. In addition, long-term HCQ treatment caused retinal toxicity in mice, unlike INS-072. Our study illustrates a method of drug development, where new applications or improvements can be explored by fully characterizing the drug's mode of action.


Assuntos
Desenvolvimento de Medicamentos , Leucócitos Mononucleares , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Reposicionamento de Medicamentos , Hidroxicloroquina
3.
Anal Chem ; 95(9): 4470-4478, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821722

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a central analytic method in biological science for the detection of proteins. Introduction of droplet-based microfluidics allowed the development of miniaturized, less-consuming, and more sensitive ELISA assays by coencapsulating the biological sample and antibody-functionalized particles. We report herein an alternative in-droplet immunoassay format, which avoids the use of particles. It exploits the oil/aqueous-phase interface as a protein capture and detection surface. This is achieved using tailored perfluorinated surfactants bearing azide-functionalized PEG-based polar headgroups, which spontaneously react when meeting at the droplet formation site, with strained alkyne-functionalized antibodies solubilized in the water phase. The resulting antibody-functionalized inner surface can then be used to capture a target protein. This surface capture process leads to concomitant relocation at the surface of a labeled detection antibody and in turn to a drastic change in the shape of the fluorescence signal from a convex shape (not captured) to a characteristic concave shape (captured). This novel droplet surface immunoassay by fluorescence relocation (D-SIRe) proved to be fast and sensitive at 2.3 attomoles of analyte per droplet. It was further demonstrated to allow detection of cytosolic proteins at the single bacteria level.


Assuntos
Anticorpos , Proteínas , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática , Microfluídica/métodos
4.
Bioconjug Chem ; 33(10): 1860-1866, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36106863

RESUMO

Cleavable linkers have become the subject of intense study in the field of chemical biology, particularly because of their applications in the construction of antibody-drug conjugates (ADC), where they facilitate lysosomal cleavage and liberation of drugs from their carrier protein. Due to lysosomes' acidic nature, acid-labile motifs have attracted much attention, leading to the development of hydrazone and carbonate linkers among several other entities. Continuing our efforts in designing new moieties, we present here a family of cyclic acetals that exhibit excellent plasma stability and acid lability, notably in lysosomes. Incorporated in ADC, they led to potent constructs with picomolar potency in vitro and similar in vivo efficacy as the commercially available ADC Kadcyla in mouse xenograft models.


Assuntos
Antineoplásicos , Imunoconjugados , Camundongos , Animais , Humanos , Imunoconjugados/metabolismo , Acetais , Ado-Trastuzumab Emtansina , Linhagem Celular Tumoral , Antineoplásicos/metabolismo , Hidrazonas , Proteínas de Transporte
5.
Org Biomol Chem ; 19(23): 5063-5067, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34027531

RESUMO

Strain-promoted azide-alkyne cycloaddition (SPAAC) is an important member of the bioorthogonal reaction family. Over the past decade, much work has been dedicated to the generation of new strained alkynes with improved reactivity. While kinetics studies of SPAAC are often conducted in organic solvents, buffered solutions or mixtures, these media do not reflect the complexity of in vivo systems. In this work, we show that performing SPAAC in human plasma leads to intriguing kinetics and selectivity effects. In particular, we observed that reactions in plasma could be accelerated up to 70-fold compared to those in methanol, and that selective couplings between a pair of reagents could be possible in competition experiments. These findings highlight the value of evaluating bioorthogonal reactions in such a complex medium, especially when in vivo applications are planned, as unsuspected behaviour can be observed, disrupting the usual rules governing the reactivity in simple solvent systems.

6.
Chemistry ; 26(61): 13797-13805, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32588934

RESUMO

Site-selective modification of proteins has been the object of intense studies over the past decades, especially in the therapeutic field. Prominent results have been obtained with recombinant proteins, for which site-specific conjugation is made possible by the incorporation of particular amino acid residues or peptide sequences. In parallel, methods for the site-selective and site-specific conjugation of native and natural proteins are starting to thrive, allowing the controlled functionalization of various types of amino acid residues. Pursuing the efforts in this field, we planned to develop a new type of site-selective method, aiming at the simultaneous conjugation of two amino acid residues. We reasoned that this should give higher chances of developing a site-selective strategy compared to the great majority of existing methods that solely target a single residue. We opted for the Ugi four-centre three-component reaction to implement this idea, with the aim of conjugating the side-chain amine and carboxylate groups of two neighbouring lysine and aspartate/glutamate. Herein, we show that this strategy can give access to valuable antibody conjugates bearing several different payloads; furthermore, the approach limits the potential conjugation sites to only six on the model antibody trastuzumab.


Assuntos
Imunoconjugados , Trastuzumab , Sequência de Aminoácidos , Aminoácidos/química , Antineoplásicos Imunológicos/química , Imunoconjugados/química , Trastuzumab/química
7.
Angew Chem Int Ed Engl ; 59(27): 10961-10970, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32233093

RESUMO

Current approaches to introduce terminal alkynes for bioorthogonal reactions into biomolecules still present limitations in terms of either reactivity, selectivity, or adduct stability. We present a method for the ethynylation of cysteine residues based on the use of ethynylbenziodoxolone (EBX) reagents. The acetylene group is directly introduced onto the thiol group of cysteine and can be used for copper-catalyzed alkyne-azide cycloaddition (CuAAC) without further processing. Labeling proceeded with reaction rates comparable to or higher than the most often used iodoacetamide on peptides or maleimide on the antibody trastuzumab, and high cysteine selectivity was observed. The reagents were also used in living cells for cysteine proteomic profiling and displayed improved coverage of the cysteinome compared to previously reported iodoacetamide or hypervalent iodine reagents. Fine-tuning of the EBX reagents allows optimization of their reactivity and physical properties.


Assuntos
Cisteína/química , Peptídeos/química , Proteínas/química , Catálise , Cobre/química , Células HeLa , Humanos , Técnicas In Vitro
8.
Chembiochem ; 20(7): 968-973, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30803119

RESUMO

Chemical Biology is the science of designing chemical tools to dissect and manipulate biology at different scales. It provides the fertile ground from which to address important problems of our society, such as human health and environment.


Assuntos
Biologia , Química , Humanos , Paris
9.
Bioconjug Chem ; 30(10): 2483-2501, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31339691

RESUMO

Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.


Assuntos
Anticorpos/metabolismo , Imunoconjugados/uso terapêutico , Imagem Molecular/métodos , Oligonucleotídeos/metabolismo , Animais , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo
10.
Org Biomol Chem ; 16(44): 8579-8584, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30375605

RESUMO

We designed a convergent synthesis pathway that provides access to trifunctional oligoethyleneglycol-amine (OEG-amine) linkers. By applying the reductive coupling of a primary azide to bifunctional OEG-azide precursors, the corresponding symmetrical dialkylamine bearing two homo-functional end chain groups and a central nitrogen was obtained. These building blocks bear minimal structural perturbation compared to the native OEG backbone which makes them attractive for biomedical applications. The NMR investigations of the mechanism process reveal the formation of nitrile and imine intermediates which can react with the reduced free amine form. Additionally, these trifunctional OEG-amine linkers were employed in a coupling reaction to afford branched multifunctional PEG dendrons which are molecularly defined. These discrete PEG-based dendrons (n = 16, 18 and 36) could be useful for numerous applications where multivalency is required.

11.
Org Biomol Chem ; 16(8): 1305-1311, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29388667

RESUMO

Here, we introduce 4-azidophenyl glyoxal (APG) as an efficient plug-and-play reagent for the selective functionalisation of arginine residues in native antibodies. The selective reaction between APG and arginines' guanidine groups allowed a facile introduction of azide groups on the monoclonal antibody trastuzumab (plug stage). These pre-functionalised antibody-azide conjugates were then derivatised during the "play stage" via a biorthogonal cycloaddition reaction with different strained alkynes. This afforded antibody-fluorophore and antibody-oligonucleotide conjugates, all showing preserved antigen selectivity and high stability in human plasma. Due to a lower content of arginines compared to lysines in native antibodies, this approach is thus attractive for the preparation of more homogeneous conjugates. This method proved to be orthogonal to classical lysine-based conjugation and allowed straightforward generation of dual-payload antibody.


Assuntos
Anticorpos Monoclonais/química , Arginina/química , Azidas/química , Fenilglioxal/análogos & derivados , Alcinos/química , Reação de Cicloadição , Imunoconjugados/química , Lisina/química , Fenilglioxal/química , Trastuzumab/química
12.
Drug Discov Today Technol ; 30: 21-26, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30553516

RESUMO

This review will discuss recent development in the bioconjugation of lysine residues on antibodies. As several chemoselective reagents have already been developed for modifying amine groups, recent strategies now tend to aim at being site-specific. Four general methods have been listed: kinetically controlled, template-directed or enzymatic strategies as well as the use of chemically programmed antibodies.


Assuntos
Imunoconjugados/química , Lisina/química , Humanos , Relação Estrutura-Atividade
13.
Bioconjug Chem ; 28(5): 1452-1457, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28443656

RESUMO

We report a plug-and-play strategy for the preparation of functionally enhanced antibodies with a defined average degree of conjugation (DoC). The first stage (plug) allows the controllable and efficient installation of azide groups on lysine residues of a native antibody using 4-azidobenzoyl fluoride. The second step (play) allows for versatile antibody functionalization with a single payload or combination of payloads, such as a toxin, a fluorophore, or an oligonucleotide, via copper-free strain-promoted azide-alkyne cycloaddition (SPAAC). It is notable that in comparison to a classical N-hydroxysuccinimide ester (NHS) strategy, benzoyl fluorides show faster and more efficient acylation of lysine residues in a PBS buffer. This translates into better control of the DoC and enables the efficient and fast functionalization of delicate biomolecules at low temperature.


Assuntos
Anticorpos Monoclonais/química , Compostos de Benzil/química , Fluoretos/química , Imunoconjugados/química , Lisina/química , Receptor ErbB-2/imunologia , Acilação , Alcinos/química , Anticorpos Monoclonais/imunologia , Azidas/química , Química Click , Reação de Cicloadição , Corantes Fluorescentes/química , Humanos , Imunoconjugados/imunologia , Estrutura Molecular , Oligonucleotídeos/química , Succinimidas/química , Toxinas Biológicas/química
14.
Org Biomol Chem ; 15(44): 9305-9310, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29077116

RESUMO

The biochemical characteristics of hetero-bifunctional cross-linkers used in bioconjugates are of essential importance to the desired features of the final adduct (i.e. antibody-drug conjugates). These include stability in biological media, chemical and biological reactivities, cleavability under defined conditions, and solubility. In our previous work, we introduced a new amino-to-thiol linker, maleimidomethyl dioxane (MD), as an alternative to classical maleimide conjugation, with increased hydrophilicity and serum stability due to succinimidyl ring-opening. In this work, we investigate the generality of linkers containing a dioxo-ring with regard to their ability to self-hydrolyze and their surprising stability at a low pH. We synthesized four FRET probes which allowed us to address the stability of the dioxo-ring and to study the maleimide ring-opening and the thiol-exchange processes by means of detecting and measuring the generation of fluorescence. It was found that the ring expansion (from a 5- to a 6-membered ring) improved the stability of the probes in aqueous media, and the increase of the chain length between the dioxo-ring and the succinimide ring (from methylene to ethylene) decreased the rate of succinimidyl ring-opening.


Assuntos
Maleimidas/química , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Maleimidas/sangue , Modelos Moleculares , Conformação Proteica , Piranos/química , Albumina Sérica Humana/química , Compostos de Sulfidrila/química , Água/química
15.
Angew Chem Int Ed Engl ; 56(49): 15612-15616, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29044843

RESUMO

We report the discovery of a new bioorthogonal click-and-release reaction involving iminosydnones and strained alkynes. This transformation leads to two products resulting from the ligation and fragmentation of iminosydnones under physiological conditions. Optimized iminosydnones were successfully used to design innovative cleavable linkers for protein modification, thus opening up new areas in the fields of drug release and target-fishing applications. This click-and-release technology offers the possibility of exchanging tags on proteins for functionalized cyclooctynes under mild and bioorthogonal conditions.

16.
Chemistry ; 22(32): 11365-70, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362372

RESUMO

The third generation of aminobiphenyl palladacycle pre-catalyst "G3-Xantphos" enables functionalization of peptides containing cysteine in high yields. The conjugation (bioconjugation) occurs chemoselectively at room temperature under biocompatible conditions. Extension of the method to protein functionalization allows selective bioconjugation of the trastuzumab antibody.


Assuntos
Cisteína/química , Paládio/química , Fosfinas/química , Proteínas/química , Xantenos/química , Catálise , Temperatura
17.
Org Biomol Chem ; 14(21): 4794-803, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27169758

RESUMO

pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action. In this paper, the hydrolytic cleavage of a wide variety of molecular structures that have been reported for their use in pH-sensitive delivery systems was examined. A wide variety of hydrolytic stability profiles were found among the panel of tested chemical functionalities. Even within a structural family, a slight modification of the substitution pattern has an unsuspected outcome on the hydrolysis stability. This work led us to establish a first classification of these groups based on their reactivities at pH 5.5 and their relative hydrolysis at pH 5.5 vs. pH 7.4. From this classification, four representative chemical functions were selected and studied in-vitro. The results revealed that only the most reactive functions underwent significant lysosomal cleavage, according to flow cytometry measurements. These last results question the acid-based mechanism of action of known drug release systems and advocate for the importance of an in-depth structure-reactivity study, using a tailored methodology, for the rational design and development of bio-responsive linkers.


Assuntos
Endossomos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Linhagem Celular , Concentração de Íons de Hidrogênio , Hidrólise , Cinética
18.
Chem Soc Rev ; 44(15): 5495-551, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26000775

RESUMO

Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.


Assuntos
Aminoácidos , Bioquímica/métodos , Biotecnologia/métodos , Proteínas , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Bovinos , Cianatos , Imunoconjugados , Insulina , Modelos Moleculares , Oxirredução , Proteínas/química , Proteínas/metabolismo
19.
Chem Soc Rev ; 44(15): 5743, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26084898

RESUMO

Correction for 'Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation' by Oleksandr Koniev et al., Chem. Soc. Rev., 2015, DOI: .

20.
Angew Chem Int Ed Engl ; 55(39): 12073-7, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27560312

RESUMO

We report the synthesis and reactivity of 4-fluorosydnones, a unique class of mesoionic dipoles displaying exquisite reactivity towards both copper-catalyzed and strain-promoted cycloaddition reactions with alkynes. Synthetic access to these new mesoionic compounds was granted by electrophilic fluorination of σ-sydnone Pd(II) precursors in the presence of Selectfluor. Their reactions with terminal and cyclic alkynes were found to proceed very rapidly and selectively, affording 5-fluoro-1,4-pyrazoles with bimolecular rate constants up to 10(4) m(-1) s(-1) , surpassing those documented in the literature with cycloalkynes. Kinetic studies were carried out to unravel the mechanism of the reaction, and the value of 4-fluorosydnones was further highlighted by successful radiolabeling with [(18) F]Selectfluor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA