Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 14(4): 364-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435120

RESUMO

Dendritic cells (DCs) are critical in immune responses, linking innate and adaptive immunity. We found here that DC-specific deletion of the transcription factor STAT5 was not critical for development but was required for T helper type 2 (TH2), but not TH1, allergic responses in both the skin and lungs. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP). STAT5 was required for TSLP-dependent DC activation, including upregulation of the expression of costimulatory molecules and chemokine production. Furthermore, TH2 responses in mice with DC-specific loss of STAT5 resembled those seen in mice deficient in the receptor for TSLP. Our results show that the TSLP-STAT5 axis in DCs is a critical component for the promotion of type 2 immunity at barrier surfaces.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator de Transcrição STAT5/metabolismo , Células Th2/imunologia , Animais , Diferenciação Celular , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/citologia , Dermatite de Contato/imunologia , Dermatite de Contato/metabolismo , Derme/imunologia , Derme/metabolismo , Feminino , Homeostase/imunologia , Janus Quinases/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Fator de Transcrição STAT5/genética , Transdução de Sinais , Células Th1/imunologia , Linfopoietina do Estroma do Timo
2.
Cancer Metastasis Rev ; 40(3): 803-818, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491463

RESUMO

Although pancreatic cancer remains to be a leading cause of cancer-related deaths in many industrialized countries, there have been major advances in research over the past two decades that provided a detailed insight into the molecular and developmental processes that govern the genesis of this highly malignant tumor type. There is a continuous need for the development and analysis of preclinical and genetically engineered pancreatic cancer models to study the biological significance of new molecular targets that are identified using various genome-wide approaches and to better understand the mechanisms by which they contribute to pancreatic cancer onset and progression. Following an introduction into the etiology of pancreatic cancer, the molecular subtypes, and key signaling pathways, this review provides an overview of the broad spectrum of models for pancreatic cancer research. In addition to conventional and patient-derived xenografting, this review highlights major milestones in the development of chemical carcinogen-induced and genetically engineered animal models to study pancreatic cancer. Particular emphasis was placed on selected research findings of ligand-controlled tumor models and current efforts to develop genetically engineered strains to gain insight into the biological functions of genes at defined developmental stages during cancer initiation and metastatic progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Modelos Animais de Doenças , Humanos , Neoplasias Pancreáticas/genética , Transdução de Sinais
3.
Reprod Biol Endocrinol ; 19(1): 112, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271917

RESUMO

BACKGROUND: The tumor susceptibility gene 101 (Tsg101), a component of the endosomal sorting complex required for transport (ESCRT) complex I, is involved in multiple biological processes involving endomembranous structures and the plasma membrane. The role of Tsg101 in the uterine epithelium was investigated in Tsg101 floxed mice crossed with Lactoferrin-iCre mice (Tsg101d/d). METHODS: Tsg101d/d mice were bred with stud male mice and the status of pregnancy was examined on days 4 and 6. Histological analyses were performed to examine the uterine architecture. Immunofluorescence staining of several markers was examined by confocal microscopy. Uterine epithelial cells (UECs) were isolated from Tsg101f/f and Tsg101d/d mice, and the expression of necroptosis effectors was examined by RT-PCR, western blotting, and immunofluorescence staining. UECs were also subjected to RNA expression profiling. RESULTS: Tsg101d/d female mice were subfertile with implantation failure, showing unattached blastocysts on day 6 of pregnancy. Histological and marker analyses revealed that some Tsg101d/d day 4 pregnant uteri showed a disintegrated uterine epithelial structure. Tsg101d/d UECs began to degenerate within 18 h of culture. In UECs, expression of necroptosis effectors, such as RIPK1, RIPK3, and MLKL were first confirmed. UECs responded to a stimulus to activate necroptosis and showed increased cell death. CONCLUSIONS: Tsg101 deficiency in the uterine epithelium causes implantation failure, which may be caused by epithelial defects. This study provides evidence that UECs harbor a necroptotic machinery that responds to death-inducing signals. Thus, Tsg101 expression in the uterine epithelium is required for normal pregnancy in mice.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Implantação do Embrião/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Células Epiteliais/metabolismo , Fatores de Transcrição/biossíntese , Útero/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células Epiteliais/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Fatores de Transcrição/genética , Útero/patologia
4.
FASEB J ; 33(6): 7451-7466, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884248

RESUMO

Development of physiologic cardiac hypertrophy has primarily been ascribed to the IGF-1 and its receptor, IGF-1 receptor (IGF-1R), and subsequent activation of the protein kinase B (Akt) pathway. However, regulation of endosome-mediated recycling and degradation of IGF-1R during physiologic hypertrophy has not been investigated. In a physiologic hypertrophy model of treadmill-exercised mice, we observed that levels of tumor susceptibility gene 101 (Tsg101), a key member of the endosomal sorting complex required for transport, were dramatically elevated in the heart compared with sedentary controls. To determine the role of Tsg101 on physiologic hypertrophy, we generated a transgenic (TG) mouse model with cardiac-specific overexpression of Tsg101. These TG mice exhibited a physiologic-like cardiac hypertrophy phenotype at 8 wk evidenced by: 1) the absence of cardiac fibrosis, 2) significant improvement of cardiac function, and 3) increased total and plasma membrane levels of IGF-1R and increased phosphorylation of Akt. Mechanistically, we identified that Tsg101 interacted with family-interacting protein 3 (FIP3) and IGF-1R, thereby stabilizing FIP3 and enhancing recycling of IGF-1R. In vitro, adenovirus-mediated overexpression of Tsg101 in neonatal rat cardiomyocytes resulted in cell hypertrophy, which was blocked by addition of monensin, an inhibitor of endosome-mediated recycling, and by small interfering RNA-mediated knockdown (KD) of FIP3. Furthermore, cardiac-specific KD of Tsg101 showed a significant reduction in levels of endosomal recycling compartment members (Rab11a and FIP3), IGF-1R, and Akt phosphorylation. Most interestingly, Tsg101-KD mice failed to develop cardiac hypertrophy after intense treadmill training. Taken together, our data identify Tsg101 as a novel positive regulator of physiologic cardiac hypertrophy through facilitating the FIP3-mediated endosomal recycling of IGF-1R.-Essandoh, K., Deng, S., Wang, X., Jiang, M., Mu, X., Peng, J., Li, Y., Peng, T., Wagner, K.-U., Rubinstein, J., Fan, G.-C. Tsg101 positively regulates physiologic-like cardiac hypertrophy through FIP3-mediated endosomal recycling of IGF-1R.


Assuntos
Cardiomegalia/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Endossomos/metabolismo , Quinase I-kappa B/fisiologia , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Ratos
5.
Blood ; 129(13): 1823-1830, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28188131

RESUMO

Patients with myelofibrosis (MF) often develop anemia and frequently become dependent on red blood cell transfusions. Results from a phase 2 study for the treatment of MF with the Janus kinase 1/2 (JAK1/2) inhibitor momelotinib (MMB) demonstrated that MMB treatment ameliorated anemia, which was unexpected for a JAK1/2 inhibitor, because erythropoietin-mediated JAK2 signaling is essential for erythropoiesis. Using a rat model of anemia of chronic disease, we demonstrated that MMB treatment can normalize hemoglobin and red blood cell numbers. We found that this positive effect is driven by direct inhibition of the bone morphogenic protein receptor kinase activin A receptor, type I (ACVR1), and the subsequent reduction of hepatocyte hepcidin production. Of note, ruxolitinib, a JAK1/2 inhibitor approved for the treatment of MF, had no inhibitory activity on this pathway. Further, we demonstrated the effect of MMB is not mediated by direct inhibition of JAK2-mediated ferroportin (FPN1) degradation, because neither MMB treatment nor myeloid-specific deletion of JAK2 affected FPN1 expression. Our data support the hypothesis that the improvement of inflammatory anemia by MMB results from inhibition of ACVR1-mediated hepcidin expression in the liver, which leads to increased mobilization of sequestered iron from cellular stores and subsequent stimulation of erythropoiesis.


Assuntos
Anemia/tratamento farmacológico , Benzamidas/uso terapêutico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Hepcidinas/biossíntese , Pirimidinas/uso terapêutico , Receptores de Ativinas Tipo I/antagonistas & inibidores , Animais , Benzamidas/farmacologia , Doença Crônica , Hepatócitos/metabolismo , Ferro/metabolismo , Mielofibrose Primária/complicações , Pirimidinas/farmacologia , Ratos
6.
Proc Natl Acad Sci U S A ; 113(51): E8228-E8237, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930322

RESUMO

Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.


Assuntos
Células Epiteliais/metabolismo , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proliferação de Células , Dasatinibe/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Ubiquitinação
7.
J Biol Chem ; 292(9): 3789-3799, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100771

RESUMO

Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Proliferação de Células , Fígado Gorduroso/metabolismo , Deleção de Genes , Hepatócitos/metabolismo , Inflamação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Gut ; 66(1): 145-155, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26385087

RESUMO

OBJECTIVE: Angiotensin II (AngII) activates via angiotensin-II-type-I receptor (AT1R) Janus-kinase-2 (JAK2)/Arhgef1 pathway and subsequently RHOA/Rho-kinase (ROCK), which induces experimental and probably human liver fibrosis. This study investigated the relationship of JAK2 to experimental and human portal hypertension. DESIGN: The mRNA and protein levels of JAK2/ARHGEF1 signalling components were analysed in 49 human liver samples and correlated with clinical parameters of portal hypertension in these patients. Correspondingly, liver fibrosis (bile duct ligation (BDL), carbon tetrachloride (CCl4)) was induced in floxed-Jak2 knock-out mice with SM22-promotor (SM22Cre+-Jak2f/f). Transcription and contraction of primary myofibroblasts from healthy and fibrotic mice and rats were analysed. In two different cirrhosis models (BDL, CCl4) in rats, the acute haemodynamic effect of the JAK2 inhibitor AG490 was assessed using microsphere technique and isolated liver perfusion experiments. RESULTS: Hepatic transcription of JAK2/ARHGEF1 pathway components was upregulated in liver cirrhosis dependent on aetiology, severity and complications of human liver cirrhosis (Model for End-stage Liver disease (MELD) score, Child score as well as ascites, high-risk varices, spontaneous bacterial peritonitis). SM22Cre+- Jak2f/f mice lacking Jak2 developed less fibrosis and lower portal pressure (PP) than SM22Cre--Jak2f/f upon fibrosis induction. Myofibroblasts from SM22Cre+-Jak2f/f mice expressed less collagen and profibrotic markers upon activation. AG490 relaxed activated hepatic stellate cells in vitro. In cirrhotic rats, AG490 decreased hepatic vascular resistance and consequently the PP in vivo and in situ. CONCLUSIONS: Hepatic JAK2/ARHGEF1/ROCK expression is associated with portal hypertension and decompensation in human cirrhosis. The deletion of Jak2 in myofibroblasts attenuated experimental fibrosis and acute inhibition of JAK2 decreased PP. Thus, JAK2 inhibitors, already in clinical use for other indications, might be a new approach to treat cirrhosis with portal hypertension.


Assuntos
Hipertensão Portal/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Cirrose Hepática/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Adulto , Animais , Tetracloreto de Carbono , Colágeno/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Janus Quinase 2/antagonistas & inibidores , Ligadura , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Proteínas Musculares/genética , Miofibroblastos/fisiologia , Pressão na Veia Porta/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos/fisiologia , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Transdução de Sinais , Transcrição Gênica , Tirfostinas/farmacologia , Regulação para Cima , Resistência Vascular/efeitos dos fármacos , Adulto Jovem , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
10.
Biol Cell ; 108(11): 324-337, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27406702

RESUMO

BACKGROUND INFORMATION: Vacuolation of the central nervous system (CNS) is observed in patients with transmissible spongiform encephalopathy, HIV-related encephalopathy and some inherited diseases, but the underlying cellular mechanisms remain poorly understood. Mice lacking the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase develop progressive, widespread spongiform degeneration of the CNS. MGRN1 ubiquitinates and regulates tumour susceptibility gene 101 (TSG101), a central component of the endosomal trafficking machinery. As loss of MGRN1 is predicted to cause partial TSG101 loss-of-function, we hypothesised that CNS vacuolation in Mgrn1 null mice may be caused by the accumulation of multi-cisternal endosome-like 'class E' vacuolar protein sorting (vps) compartments similar to those observed in Tsg101-depleted cells in culture. RESULTS: To test this hypothesis, Tsg101 was deleted from mature oligodendroglia in vivo. This resulted in severe spongiform encephalopathy, histopathologically similar to that observed in Mgrn1 null mutant mice but with a more rapid onset. Vacuoles in the brains of Tsg101-deleted and Mgrn1 mutant mice labelled with endosomal markers, consistent with an endosomal origin. Vacuoles in the brains of mice inoculated with Rocky Mountain Laboratory (RML) prions did not label with these markers, indicating a different origin, consistent with previously published studies that indicate RML prions have a primary effect on neurons and cause vacuolation in an MGRN1-independent manner. Oligodendroglial deletion of Rab7, which mediates late endosome-to-lysosome trafficking and autophagosome-lysosome fusion, did not cause spongiform change. CONCLUSIONS: Our data suggest that the formation of multi-cisternal 'class E' vps endosomal structures in oligodendroglia leads to vacuolation. SIGNIFICANCE: This work provides the first evidence that disrupting multi-vesicular body formation in oligodendroglia can cause white matter vacuolation and demyelination. HIV is known to hijack the endosomal sorting machinery, suggesting that HIV infection of the CNS may also act through this pathway to cause encephalopathy.


Assuntos
Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Deleção de Genes , Oligodendroglia/patologia , Doenças Priônicas/genética , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Knockout , Oligodendroglia/metabolismo , Doenças Priônicas/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
11.
Genesis ; 54(11): 582-588, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27671227

RESUMO

The biological functions of the Janus kinase 1 (JAK1) are suggested to be pleiotropic since this signal transducer is ubiquitously expressed and coupled to a variety of cytokine receptors. Consequently, mice that are deficient in this tyrosine kinase were reported to die shortly after birth. To facilitate studies that address the biological and molecular functions of JAK1 during postnatal development, we performed gene targeting in embryonic stem cells and generated a Cre/lox-based conditional knockout mouse model. Expression of Cre recombinase in the germline converted the Jak1 conditional knockout allele (Jak1fl ) into a null allele (Jak1- ) that when subsequently crossed into homozygosity led to a complete absence of the JAK1 protein in developing embryos. JAK1 deficient embryos were visibly smaller starting at E15.5. Newborn pups exhibited signs of apnea and died within hours after birth. The examination of fibroblasts from conditional knockout embryos and their littermate wildtype controls expressing JAK1 showed that lack of this Janus kinase resulted in an impaired tyrosine phosphorylation and activation of the downstream Signal Transducers and Activators of Transcription (STATs) 1, 3, and 6. JAK1 conditional knockout mice will be an invaluable tool to study cytokine signaling during normal development and disease progression in adult animals.


Assuntos
Desenvolvimento Embrionário/genética , Janus Quinase 1/genética , Camundongos Knockout , Alelos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Integrases/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição STAT/genética
12.
Cancer Metastasis Rev ; 34(4): 593-609, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25634251

RESUMO

Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer.


Assuntos
Antígenos de Neoplasias/genética , Inflamação/patologia , Mucinas/genética , Mucosa/metabolismo , Neoplasias/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Engenharia Genética , Humanos , Camundongos , Camundongos Knockout , Prognóstico
13.
Am J Pathol ; 185(12): 3202-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26475415

RESUMO

The Janus kinase (JAK) system is involved in numerous cell signaling processes and is highly expressed in cardiac tissue. The JAK isoform JAK2 is activated by numerous factors known to influence cardiac function and pathologic conditions. However, although abundant, the role of JAK2 in the regulation or maintenance of cardiac homeostasis remains poorly understood. Using the Cre-loxP system, we generated a cardiac-specific deletion of Jak2 in the mouse to assess the effect on cardiac function with animals followed up for a 4-month period after birth. These animals had marked mortality during this period, although at 4 months mortality in male mice (47%) was substantially higher compared with female mice (30%). Both male and female cardiac Jak2-deleted mice had hypertrophy, dilated cardiomyopathy, and severe left ventricular dysfunction, including a marked reduction in ejection fractions as assessed by serial echocardiography, although the responses in females were somewhat less severe. Defective cardiac function was associated with altered protein levels of sarcoplasmic reticulum calcium-regulatory proteins particularly in hearts from male mice that had depressed levels of SERCA2 and phosphorylated phospholamban. In contrast, SERCA2 was unchanged in hearts of female mice, whereas phosphorylated phospholamban was increased. Our findings suggest that cardiac JAK2 is critical for maintaining normal heart function, and its ablation produces a severe pathologic phenotype composed of myocardial remodeling, heart failure, and pronounced mortality.


Assuntos
Cardiomegalia/enzimologia , Janus Quinase 2/fisiologia , Disfunção Ventricular Esquerda/enzimologia , Remodelação Ventricular/fisiologia , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Feminino , Deleção de Genes , Genótipo , Janus Quinase 2/deficiência , Janus Quinase 2/genética , Masculino , Camundongos Knockout , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/genética
14.
Blood ; 121(7): 1188-99, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23264594

RESUMO

To establish a preclinical animal model for testing drugs with potential effects on myeloproliferative neoplasms (MPNs), we first performed a detailed phenotypic characterization of Cre-inducible transgenic JAK2-V617F mice. Deleting the conditional mouse Jak2-knockout alleles increased erythropoiesis and accentuated the polycythemia vera phenotype, but did not alter platelet or granulocyte levels. In a transplantation assay, JAK2-V617F(+) BM cells had an advantage over wild-type competitor cells. Using this competitive repopulation assay, we compared the effects of INC424 (ruxolitinib), a dual Jak1/Jak2 inhibitor, and hydroxyurea (HU). HU led to weight loss, but did not reduce spleen weight. The hematologic parameters were lowered and a slight decrease of the mutant allele burden was noted. INC424 had little effect on body weight, but strongly decreased spleen size and rapidly normalized RBC and neutrophil parameters. No significant decrease in the mutant allele burden was observed. INC424 reduced the phospho-Stat5 levels, whereas HU strongly increased phospho-Stat5, most likely because of the elevated erythropoietin levels in response to the HU-induced anemia. This compensatory increase in JAK/STAT signaling may counteract the beneficial effects of cytoreduction at higher doses of HU and represents an adverse effect that should be avoided.


Assuntos
Hidroxiureia/farmacologia , Janus Quinase 2/genética , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Pirazóis/farmacologia , Alelos , Substituição de Aminoácidos , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Nitrilas , Fenótipo , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Pirimidinas , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Stem Cells ; 32(7): 1878-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24677703

RESUMO

Jak2, a member of the Janus kinase family of nonreceptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Jak2 knockout allele, we have found that Jak2 deletion results in rapid loss of HSCs/progenitors leading to bone marrow failure and early lethality in adult mice. Jak2 deficiency causes marked impairment in HSC function, and the mutant HSCs are severely defective in reconstituting hematopoiesis in recipient animals. Jak2 deficiency also causes significant apoptosis and loss of quiescence in HSC-enriched LSK (Lin(-)Sca-1(+)c-Kit(+)) cells. Jak2-deficient LSK cells exhibit elevated reactive oxygen species levels and enhanced p38 MAPK activation. Mutant LSK cells also show defective Stat5, Erk, and Akt activation in response to thrombopoietin and stem cell factor. Gene expression analysis reveals significant downregulation of genes related to HSC quiescence and self-renewal in Jak2-deficient LSK cells. These data suggest that Jak2 plays a critical role in the maintenance and function of adult HSCs.


Assuntos
Células-Tronco Adultas/enzimologia , Células-Tronco Hematopoéticas/enzimologia , Janus Quinase 2/fisiologia , Células-Tronco Adultas/fisiologia , Anemia Aplástica , Animais , Doenças da Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Proliferação de Células , Sobrevivência Celular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Hemoglobinúria Paroxística/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Fator de Células-Tronco/fisiologia , Trombopoetina/fisiologia
16.
J Biol Chem ; 288(19): 13842-9, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23548897

RESUMO

BACKGROUND: Signaling pathways underlying BV8-mediated oncogenesis remain unknown. RESULTS: BV8-STAT3 forms a feed-forward loop in both normal and malignant myeloid cells and promotes tumor growth. CONCLUSION: JAK2/STAT3 signaling plays critical roles in BV8-mediated myeloid cell-dependent oncogenesis. SIGNIFICANCE: This study identifies a novel role of BV8-STAT3 signaling in mediating cross-talk between tumor microenvironment and tumor cells. An important role of BV8 in mobilization of myeloid cells and myeloid cell-dependent angiogenesis has been established. Recently, it has also been shown that granulocyte colony-stimulating factor (G-CSF)-induced BV8 expression is STAT3 dependent in CD11b(+)Gr1(+) myeloid cells. However, the BV8 downstream signaling pathway(s) intrinsic to myeloid cells crucial for angiogenesis, and potentially also for development of cancers of myeloid origin, remains largely unknown. Here we show that BV8 activates STAT3, which is critical for regulating genes important for both tumor cell proliferation/survival and tumor angiogenesis, in both normal and malignant myeloid cells. Further, BV8-induced STAT3 activation requires Janus-activated kinase 2 (JAK2) activity as shown by both genetic and pharmacologic inhibition. Knocking down BV8 in human myeloid leukemia cells inhibits STAT3 activity and expression of STAT3 downstream angiogenic and pro-proliferation/survival genes, leading to a decrease in tumor cell viability. BV8 shRNA expressing leukemia cells exhibit reduced STAT3 activity and tumor growth in vivo. Taken together, we have delineated a signaling pathway downstream of BV8 that plays critical roles in both the tumor microenvironment and malignant myeloid cells for angiogenesis and tumor cell proliferation/survival.


Assuntos
Hormônios Gastrointestinais/genética , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo , Neuropeptídeos/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Retroalimentação Fisiológica , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/fisiologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Transplante de Neoplasias , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Carga Tumoral
17.
Am J Pathol ; 183(2): 617-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747947

RESUMO

A number of inhibitors have been used to dissect the functional relevance of Jak2 in endothelial homeostasis, with disparate results. Given that Jak2 deficiency leads to embryonic lethality, the exact role of Jak2 in the regulation of postnatal endothelial function is yet to be fully elucidated. We generated a model in which Jak2 deficiency can be induced by tamoxifen in adult mice. Loss of Jak2 significantly impaired endothelium-dependent response capacity for vasodilators. Matrigel plug assays indicated a notable decrease in endothelial angiogenic function in Jak2-deficient mice. Studies in a hindlimb ischemic model indicated that Jak2 activity is likely to be a prerequisite for prompt perfusion recovery, based on the concordance of temporal changes in Jak2 expression during the course of ischemic injury and perfusion recovery. A remarkable delay in perfusion recovery, along with reduced capillary and arteriole formation, was observed in Jak2-deficient mice. Antibody array studies indicated that loss of Jak2 led to repressed eNOS expression. In mechanistic studies, Jak2 deficiency attenuated Raf-1/MEK1 signaling, which then reduced activity of Sp-1, an essential transcription factor responsible for eNOS expression. These data are important not only for understanding the exact role that Jak2 plays in endothelial homeostasis, but also for assessing Jak2-based therapeutic strategies in a variety of clinical settings.


Assuntos
Janus Quinase 2/deficiência , MAP Quinase Quinase 1/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas c-raf/fisiologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiologia , Inibidores Enzimáticos/farmacologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Janus Quinase 2/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Tamoxifeno/farmacologia , Vasodilatadores/farmacologia
18.
BMC Cancer ; 14: 195, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628780

RESUMO

BACKGROUND: The serine-threonine kinase AKT1 plays essential roles during normal mammary gland development as well as the initiation and progression of breast cancer. AKT1 is generally considered a ubiquitously expressed gene, and its persistent activation is transcriptionally controlled by regulatory elements characteristic of housekeeping gene promoters. We recently identified a novel Akt1 transcript in mice (Akt1m), which is induced by growth factors and their signal transducers of transcription from a previously unknown promoter. The purpose of this study was to examine whether normal and neoplastic human breast epithelial cells express an orthologous AKT1m transcript and whether its expression is deregulated in cancer cells. METHODS: Initial sequence analyses were performed using the UCSC Genome Browser and GenBank to assess the potential occurrence of an AKT1m transcript variant in human cells and to identify conserved promoter sequences that are orthologous to the murine Akt1m. Quantitative RT-PCR was used to determine the transcriptional activation of AKT1m in mouse mammary tumors as well as 41 normal and neoplastic human breast epithelial cell lines and selected primary breast cancers. RESULTS: We identified four new AKT1 transcript variants in human breast cancer cells that are orthologous to the murine Akt1m and that encode the full-length kinase. These transcripts originate from an alternative promoter that is conserved between humans and mice. Akt1m is upregulated in the majority of luminal-type and basal-type mammary cancers in four different genetically engineered mouse models. Similarly, a subset of human breast cancer cell lines and primary breast cancers exhibited a higher expression of orthologous AKT1m transcripts. CONCLUSIONS: The existence of an alternative promoter that drives the expression of the unique AKT1m transcript may provide a mechanism by which the levels of AKT1 can be temporally and spatially regulated at particular physiological states, such as cancer, where a heightened activity of this kinase is required.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Isoformas de RNA/análise , Processamento Alternativo , Animais , Sequência de Bases , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sequência Conservada , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Experimentais , Camundongos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sítios de Splice de RNA
19.
Nat Chem Biol ; 8(3): 285-93, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286129

RESUMO

Constitutive activation of STAT5 is critical for the maintenance of chronic myeloid leukemia (CML) characterized by the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (TKIs) for the STAT5-activating kinase JAK2 have been discussed as a treatment option for CML patients. Using murine leukemia models combined with inducible ablation of JAK2, we show JAK2 dependence for initial lymphoid transformation, which is lost once leukemia is established. In contrast, initial myeloid transformation and leukemia maintenance were independent of JAK2. Nevertheless, several JAK2 TKIs induced apoptosis in BCR-ABL(+) cells irrespective of the presence of JAK2. This is caused by the previously unknown direct 'off-target' inhibition of BCR-ABL. Cellular and enzymatic analyses suggest that BCR-ABL phosphorylates STAT5 directly. Our findings suggest uncoupling of the canonical JAK2-STAT5 module upon BCR-ABL expression, thereby making JAK2 targeting dispensable. Thus, attempts to pharmacologically target STAT5 in BCR-ABL(+) diseases need to focus on STAT5 itself.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Janus Quinase 2/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Células HEK293 , Humanos , Mesilato de Imatinib , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/deficiência , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperazinas/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Células U937
20.
Cell Rep ; 43(5): 114202, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733583

RESUMO

Interleukin-6 (IL-6)-class inflammatory cytokines signal through the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and promote the development of pancreatic ductal adenocarcinoma (PDAC); however, the functions of specific intracellular signaling mediators in this process are less well defined. Using a ligand-controlled and pancreas-specific knockout in adult mice, we demonstrate in this study that JAK1 deficiency prevents the formation of KRASG12D-induced pancreatic tumors, and we establish that JAK1 is essential for the constitutive activation of STAT3, whose activation is a prominent characteristic of PDAC. We identify CCAAT/enhancer binding protein δ (C/EBPδ) as a biologically relevant downstream target of JAK1 signaling, which is upregulated in human PDAC. Reinstating the expression of C/EBPδ was sufficient to restore the growth of JAK1-deficient cancer cells as tumorspheres and in xenografted mice. Collectively, the findings of this study suggest that JAK1 executes important functions of inflammatory cytokines through C/EBPδ and may serve as a molecular target for PDAC prevention and treatment.


Assuntos
Carcinoma Ductal Pancreático , Janus Quinase 1 , Neoplasias Pancreáticas , Fator de Transcrição STAT3 , Animais , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Progressão da Doença , Transdução de Sinais , Linhagem Celular Tumoral , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA