Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(4): 78, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589751

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.


Assuntos
Fibrose Pulmonar Idiopática , Nanopartículas , Humanos , Pandemias , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/induzido quimicamente , Pulmão , Sistemas de Liberação de Medicamentos , Piridonas/uso terapêutico
2.
AAPS PharmSciTech ; 25(2): 29, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302633

RESUMO

Progesterone, a female sex steroid hormone, is highly lipophilic, leading to poor oral bioavailability. This study aimed to develop a progesterone bilosome system to enhance its oral bioavailability and retain it longer in the body. Progesterone vesicles were formulated with bile salts by thin film hydration method to prevent enzymatic and bile acid degradation. The Box-Behnken experimental design was used to statistically optimize progesterone bilosomes by checking the effect of phosphatidylcholine, cholesterol, and sodium deoxycholate on vesicle size, zeta potential, and entrapment efficiency. The optimum batch showed 239.5 nm vesicle size, -28.2 mV zeta potential and 84.08% entrapment efficiency, respectively, which were significantly affected by phosphatidylcholine and cholesterol concentration. The successful incorporation of progesterone in the system was evident from ATR-FTIR analysis that revealed no sharp progesterone peaks in bilosomes. TEM analysis confirmed the spherical structure and uniform bilosome vesicles. Furthermore, the in vitro drug release of progesterone bilosomes revealed a sustained pattern exhibiting 90% drug release in 48 h. The pharmacokinetic study in female ovariectomized Wistar rats confirmed the 4.287- and 9.75-fold enhanced oral bioavailability of the progesterone bilosomes than marketed capsules and progesterone API, respectively. Therefore, progesterone bilosome formulation can be further explored for improved oral administration in chronic treatments.


Assuntos
Lipossomos , Progesterona , Ratos , Animais , Feminino , Lipossomos/química , Ratos Wistar , Disponibilidade Biológica , Administração Oral , Colesterol/química , Fosfatidilcolinas , Tamanho da Partícula
3.
Ann Pharm Fr ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942078

RESUMO

OBJECTIVES: Edaravone (EDR) is an effective neuroprotective agent in various neurological diseases; however, its use is restricted due to poor oral absorption. Bile salts are known for improving solubility and inhibiting drug crystallization in supersaturated conditions of the gastrointestinal tract (GIT). In our previous work, we prepared coamorphous dispersion (COAM) of EDR with sodium taurocholate (NaTC) using spray drying. The optimized EDR COAM exhibited superior in vitro performance compared to plain EDR. EDR is well absorbed in fasted-over-fed conditions. METHODS: The present work, we conducted a pharmacokinetic study for EDR and EDR COAM in fasted and fed conditions to check effect of food on its oral absorption. The LC-MS/MS-based method was developed and validated to determine the amount of EDR in plasma. RESULTS: The results suggested that EDR COAM did not show a significant difference in Cmax (p=0.3544) and AUC (p=0.1696) of fasted and fed states. On the other hand, plain EDR showed 2-fold and 3-fold reduced Cmax (p<0.0001) and AUC (p=0.0094) in the fed condition, respectively. The Cmax and AUC of EDR COAM were improved in fasted (AUC:2.56-fold) and fed states (AUC: 5.74-fold) than plain EDR, suggesting better oral absorption of COAM than crystalline EDR without having the effect of food. CONCLUSIONS: The unique structural attributes of NaTC had the potential to inhibit the recrystallization of EDR in GIT, while concurrently reducing the impact of food on the oral absorption of EDR.

4.
Pharm Dev Technol ; 28(10): 1048-1055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987762

RESUMO

This research aimed to evaluate the effect of variables on exemestane-loaded bovine serum albumin nanoparticles (EXE-BSA NPs) to improve anti-breast cancer activity. EXE-BSA NPs were optimized using 32 factorial design, wherein the concentration of BSA (X1) and sonication time (X2) were independent variables and particle size (Y1) and %w/w entrapment efficiency (Y2) were dependent variables. The statistical optimization revealed a significant effect of BSA concentration on both variables, whereas sonication time affected only particle size. The optimized EXE-BSA NPs were spherical with 124.1 ± 2.62 nm particle size, 83.95 ± 1.06% w/w drug entrapment, and exhibited a biphasic release of 100% (w/w) drug over 72 h. The optimized formulation induced cytotoxicity in MCF-7 cell lines with an IC50 value of 21.46 µg/mL by MTT assay, almost half the free drug (54.87 µg/mL). Thus, statistically optimized EXE-BSA NPs were effective in MCF-7 cell lines and can be explored to treat estrogen receptor-positive breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Células MCF-7 , Portadores de Fármacos , Soroalbumina Bovina , Neoplasias da Mama/tratamento farmacológico , Tamanho da Partícula
5.
Phytother Res ; 36(6): 2324-2341, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35318759

RESUMO

Rheumatoid arthritis (RA) is a chronic, complex, systemic autoimmune disease causing chronic inflammation, swelling, and pain. It affects pulmonary and ocular physiology, gastrointestinal disturbance, skeletal disorders, and renal malfunctioning. Although conventional and biological drugs available to treat RA are potent and effective, they lead to life-threatening side effects and patient discomfort. Hence, alternative therapies are explored for their treatment which is safe, effective, and economical. Herbal drugs are widely used as an alternative therapy and some medicinal plants, especially dietary polyphenols proved their efficacy in treating RA. Polyphenols are secondary metabolites of plants possessing several pharmacological actions. They exert anti-inflammatory, immunomodulatory and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases. Thus, polyphenols could be a promising option for the management of RA. Unfortunately, polyphenols suffer from poor bioavailability due to their physicochemical properties and incorporation into novel delivery systems such as liposomes, nanoparticles, nanoemulsions, micelles improved their oral bioavailability. This review article summarizes dietary polyphenols, their pharmacological actions and novel delivery systems for the treatment of RA. Nevertheless, the commercial translation of polyphenols could be only possible after establishing their safety profile and successful clinical trials.


Assuntos
Artrite Reumatoide , Polifenóis , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/patologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Fator de Necrose Tumoral alfa
6.
AAPS PharmSciTech ; 24(1): 27, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577896

RESUMO

The current study aimed to improve the processability and oral bioavailability of itraconazole (ITZ) via spherical agglomeration. ITZ-spherical agglomerates (ITZ-SA) and ITZ-poloxamer 407-spherical agglomerates (ITZ-PLX-SA) were optimized using Box-Behnken design. Here, the drug release was affected by polymer concentration and stirring speed, whereas particle size was altered by stirring speed, polymer concentration, and amount of bridging liquid. Heckel and Kawakita studies showed a reduction in mean yield pressure and remarkably lowered 1/b value than ITZ, indicating better compactibility and flowability of ITZ-PLX-SA. Physicochemical interactions were not observed during the process, as indicated by ATR-FTIR, DSC, and XRPD. The significant improvement in % drug release of ITZ-PLX-SA was attributed to better wettability and the presence of polymer than ITZ-SA and ITZ. The pharmacokinetic study in rats indicated fivefold enhanced Cmax and twofold improved AUC for ITZ-PLX-SA than plain drug. Thus, spherical agglomeration could improve overall processability and pharmacokinetic profile of ITZ.


Assuntos
Itraconazol , Poloxâmero , Ratos , Animais , Itraconazol/farmacocinética , Disponibilidade Biológica , Polímeros , Liberação Controlada de Fármacos , Tamanho da Partícula , Antifúngicos/farmacocinética
7.
J Microencapsul ; 37(8): 557-565, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924680

RESUMO

AIMS: This study was aimed to develop Isotretinoin (ITN) and α-tocopherol acetate (α-TA) loaded solid lipid nanoparticle topical gel for better skin sensitivity and potentiation of efficacy. METHODS: ITN and α-TA-loaded solid lipid nanoparticles (AE-SLN) were prepared by microemulsion method with glyceryl mono-stearate as lipid and tween 80: butanol as surfactantmix and characterised. AE-SLN gel was evaluated for physicochemical characteristics, drug release, skin irritation and anti-acne activity in rats. RESULTS: AE-SLNs had mean particle size of 193.4 nm (zeta-potential -29 mV) and entrapment efficiency of 84%w/w for ITN and 77.4%w/w for α-TA. AE-SLN gel showed sustained drug release for 24 h with a final cumulative release of 95.8% w/w and 89.1%w/w for ITN and α-TA. AE-SLN gel showed no erythema or edoema in rabbits and potent efficacy in rat model of acne. CONCLUSION: In conclusion, AE-SLN gel has the potential to use as a non-irritant topical formulation for the treatment of acne.


Assuntos
Acne Vulgar/tratamento farmacológico , Géis/química , Isotretinoína/administração & dosagem , Lipídeos/química , Nanopartículas/química , alfa-Tocoferol/administração & dosagem , Administração Cutânea , Administração Tópica , Animais , Butanóis/química , Modelos Animais de Doenças , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Polissorbatos/química , Coelhos , Ratos , Ratos Wistar , Absorção Cutânea , Tensoativos
8.
Pharm Dev Technol ; 25(3): 376-384, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31842656

RESUMO

Ethambutol hydrochloride (ETB), high dose anti-tubercular drug exhibits poor micromeritics and compressibility. The current study aimed to enhance flow, compressibility and packing characteristics, thereby improving processability of ETB by spherical agglomeration. Quasi emulsion solvent diffusion method was used for agglomeration process in which saturated aqueous ETB solution was prepared and the crystallization was carried out subsequently at different ratios of acetone and ethyl acetate which act as anti-solvent. Further the process was optimised statistically using 32 factorial design keeping 'speed of stirring' and 'ratio acetone and ethyl acetate' as independent variables and particle size as dependent variable. Optimised batch of ethambutol hydrochloride spherical agglomerates (ETB-SA) was characterised for sieve analysis, solid state characteristics and Kawakita analysis. The uniformity of ETB-SA was observed with SEM while XRPD studies revealed reduction in crystallinity for ETB-SA. DSC and FTIR indicated no polymeric or chemical alteration during crystallization process. The flow properties of ETB-SA were found superior and its Kawakita parameters indicated improved packability and flowability compared to ETB. ETB has high solubility in water therefore was no significant difference was observed in in vitro dissolution of ETB and ETB-SA. Thus spherical agglomeration, a revered particle engineering technique, continues to be a salient approach for enhancing processability of high-dose drugs like ETB.


Assuntos
Antituberculosos/administração & dosagem , Química Farmacêutica/métodos , Etambutol/administração & dosagem , Solventes/química , Antituberculosos/química , Cristalização , Emulsões , Etambutol/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Solubilidade , Tecnologia Farmacêutica , Difração de Raios X
9.
AAPS PharmSciTech ; 20(3): 141, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30868308

RESUMO

In the present work, co-amorphous mixture (COAM) of poorly soluble nateglinide (NT) and highly soluble Metformin hydrochloride (MT) was prepared by spray drying method to improve the dissolution rate of NT and the processability of COAM. Binary spray-dried COAM of NT and MT (120 mg: 500 mg) was prepared in its clinical dose ratio whereas 20% Neusilin®US2 (NS) was added to prepare non-sticky, free flowing ternary COAM. Solubility studies of binary and ternary COAM exhibited sevenfold and tenfold rise in the solubility of NT. Complete amorphization of NT was revealed in XRPD and DSC studies of both COAM and hydrogen-bonding interactions were reflected in FTIR-spectra. SEM microphotographs illustrated round-shaped microparticles in ternary COAM against the irregular particles in binary COAM. In vitro dissolution of NT was significantly improved in ternary COAM > binary COAM > NT irrespective of dissolution medium. On contrary, MT has partially transformed to the amorphous form in COAM without altering the solubility. In accelerated stability studies, NT and MT devitrification was not observed in XRPD of ternary COAM in contrast to binary COAM. Therefore, enhanced dissolution of NT, stabilization of spray-dried dispersion, and its improved processability can be achieved by preparing ternary COAM of NT:MT:NS.


Assuntos
Hipoglicemiantes/química , Metformina/química , Nateglinida/química , Silicatos/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Estabilidade de Medicamentos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Nanomedicine ; 14(8): 2609-2618, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30171904

RESUMO

Selegiline, a well-known anti-Parkinson agent, is reported to be associated with poor oral bioavailability and safety. Therefore, we formulated selegiline as chitosan nanoparticles and evaluated its pharmacokinetics and pharmacodynamics after intranasal administration to rats relative to those after oral administration. The optimized formulation exhibited spherical nanoparticles with more than 90% drug loading and steady in vitro and ex vivo drug release. Selegiline concentrations in the brain and plasma were 20- and 12-fold higher, respectively, after intranasal administration than after oral administration. Treatment with intranasal nanoparticles was also associated with better performance in locomotor activity, catalepsy, and stride length tests and significantly increased dopamine, catalase activity, and glutathione content in the brain. Therefore, intranasally administered selegiline nanoparticles holds superior therapeutic value compared to oral administration and can be a promising approach for the treatment of Parkinson's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Nanopartículas/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Selegilina/farmacologia , Selegilina/farmacocinética , Administração Intranasal , Animais , Antiparkinsonianos/química , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Encéfalo/metabolismo , Quitosana/química , Portadores de Fármacos , Masculino , Nanopartículas/química , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Selegilina/química , Distribuição Tecidual
11.
Biopharm Drug Dispos ; 39(3): 143-151, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327455

RESUMO

Terminalia arjuna (T. arjuna) is an Indian medicinal plant belonging to the family Combretaceae and possesses numerous therapeutic activities including its immense cardioprotective activity. In the present work, a methanolic bark extract of T. arjuna was evaluated for CYP3A and CYP2D inhibition potential in rat liver microsomes (RLM). Further, the methanolic bark extract was fractionated successively using increasing polarity solvents starting with petroleum ether, chloroform, ethyl acetate and n-butanol. The fractions so obtained were also evaluated for their CYP3A and CYP2D inhibition potential. Probe substrates testosterone and dextromethorphan were used for CYP3A and CYP2D respectively. The IC50 values for the methanolic extract and the fractions were found to be less than 50 µg/ml in RLM for both CYP3A and CYP2D isoenzymes. The most potent n-butanol fraction was further fractionated with column chromatography to isolate the highest active constituent responsible for the activity. Fraction 4 of the n-butanol extract was the most potent fraction with IC50 values of 5.64 ± 0.735 µg/ml and 16.63 ± 0.879 µg/ml for CYP3A and CYP2D in RLM, respectively. Therefore, in vitro data indicated that the Terminalia arjuna extract contains constituents that can potentially inhibit the CYP3A and CYP2D isoenzymes which may in turn lead to pharmacokinetic drug-herb interaction.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Família 2 do Citocromo P450/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Extratos Vegetais/farmacologia , Terminalia/química , Animais , Família 2 do Citocromo P450/metabolismo , Isoenzimas/antagonistas & inibidores , Metanol/química , Casca de Planta/química , Extratos Vegetais/química , Ratos
12.
AAPS PharmSciTech ; 17(3): 673-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26314243

RESUMO

The aim of the present work was to prepare a co-amorphous mixture (COAM) of Nateglinide and Metformin hydrochloride to enhance the dissolution rate of poorly soluble Nateglinide. Nateglinide (120 mg) and Metformin hydrochloride (500 mg) COAM, as a dose ratio, were prepared by ball-milling technique. COAMs were characterized for saturation solubility, amorphism and physicochemical interactions (X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR)), SEM, in vitro dissolution, and stability studies. Solubility studies revealed a sevenfold rise in solubility of Nateglinide from 0.061 to 0.423 mg/ml in dose ratio of COAM. Solid-state characterization of COAM suggested amorphization of Nateglinide after 6 h of ball milling. XRPD and DSC studies confirmed amorphism in Nateglinide, whereas FTIR elucidated hydrogen interactions (proton exchange between Nateglinide and Metformin hydrochloride). Interestingly, due to low energy of fusion, Nateglinide was completely amorphized and stabilized by Metformin hydrochloride. Consequently, in vitro drug release showed significant increase in dissolution of Nateglinide in COAM, irrespective of dissolution medium. However, little change was observed in the solubility and dissolution profile of Metformin hydrochloride, revealing small change in its crystallinity. Stability data indicated no traces of devitrification in XRPD of stability sample of COAM, and % drug release remained unaffected at accelerated storage conditions. Amorphism of Nateglinide, proton exchange with Metformin hydrochloride, and stabilization of its amorphous form have been noted in ball-milled COAM of Nateglinide-Metformin hydrochloride, revealing enhanced dissolution of Nateglinide. Thus, COAM of Nateglinide-Metformin hydrochloride system is a promising approach for combination therapy in diabetic patients.


Assuntos
Cicloexanos/análise , Cicloexanos/síntese química , Metformina/análise , Metformina/síntese química , Fenilalanina/análogos & derivados , Química Farmacêutica , Cicloexanos/farmacocinética , Combinação de Medicamentos , Metformina/farmacocinética , Nateglinida , Fenilalanina/análise , Fenilalanina/síntese química , Fenilalanina/farmacocinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
13.
Int J Biol Macromol ; 254(Pt 1): 127622, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890752

RESUMO

The study aimed to develop a biopolymer-based mupirocin film-forming spray (MUP-FFS) for wound healing using chitosan and α-cellulose. MUP-FFS formulation was optimized by box-Behnken design, wherein the amount of chitosan, glycerol, and microfluidizer cycles showed a significant effect on the drying time and sprayability, but drug release remained unaffected. The optimized MUP-FFS formulation prepared by 13 microfluidizer cycles containing chitosan (0.125 %), glycerol (2.76 %) was quickly sprayable with 235 s drying time. The viscosity, spray uniformity and occlusive potential were found optimum for MUP-FFS. MUP-FFS released 98.066 % of MUP, 2-fold and 4-fold greater than the marketed ointment and MUP-API. The transmission electron microscopy displayed a homogeneous fibrous network, and scanning electron microphotographs showed uniform drug distribution on the MUP-film surface. The antimicrobial study revealed the efficacy of MUP-FFS against S.aureus and E.coli, wherein the former was more susceptible to formulation than the later. MUP-FFS indicated better wound contraction and healing than other groups on 7th and 14th day in rats. On Day-21, MUP-FFS could regress TGF-ß1 to a normal level similar to the marketed formulation, which was also reflected in histopathological observations. Therefore, MUP-FFS can be a treatment option for chronic wounds, applied without touch and with minimal mechanical pressure.


Assuntos
Anti-Infecciosos , Quitosana , Ratos , Animais , Mupirocina/farmacologia , Antibacterianos/farmacologia , Quitosana/farmacologia , Glicerol/farmacologia , Anti-Infecciosos/farmacologia , Cicatrização , Celulose/farmacologia , Staphylococcus aureus
14.
Brain Res ; 1834: 148905, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565372

RESUMO

Alzheimer's disease (AD) is a primary cause of dementia that affects millions of people worldwide and its prevalence is likely to increase largely in the coming decades. Multiple complex pathways, such as oxidative stress, tau and amyloid-beta (Aß) pathology, and cholinergic dysfunction, are involved in the pathogenesis of Alzheimer's disease. The conventional treatments provide only symptomatic relief and not a complete cure for the disease. On the other hand, recent studies have looked into the possibility of flavonoids as an effective therapeutic strategy for treating AD. Quercetin, a well-known flavonol, has been extensively studied for AD treatment. Therefore, this review mainly focuses on the pharmacokinetics properties of quercetin and its modes of action, such as antioxidant, anti-inflammatory, anti-amyloidogenic, and neuroprotective properties, which are beneficial in treating AD. It also highlights the nano delivery systems of quercetin, including liposomes, nanostructures lipid carriers, solid lipid nanoparticles, nanoemulsions, microemulsions, self-emulsifying drug delivery systems, and nanoparticles reported for AD treatment. The remarkable potential of quercetin nanocarriers has been reflected in enhancing its bioavailability and therapeutic efficacy. Therefore, clinical studies must be conducted to explore it as a therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Antioxidantes , Fármacos Neuroprotetores , Quercetina , Quercetina/administração & dosagem , Quercetina/farmacocinética , Quercetina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas
15.
Int J Pharm ; 644: 123322, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37591474

RESUMO

Nintedanib (NIN) is one of the FDA-approved tyrosine kinase inhibitor drugs used to treat idiopathic pulmonary fibrosis (IPF). This study aimed to formulate a long-circulating injection of Nintedanib to treat bedridden patients with IPF. Nintedanib was incorporated into chitosan nanoparticles (NIN-NP) via the ionic gelation method, and N-acetyl cysteine (NAC), a known antioxidant and mucolytic agent, was added to the NIN-NP (NAC-NIN-NP). The lyophilized formulation had a particle size of 174 nm, a polydispersity index of 0.511, and a zeta potential of 18.6 mV. The spherical nanoparticles were observed in transmission electron microscopy, whereas field emission scanning electron microscopy showed irregular clusters of NP. The thiolation of the chitosan in NAC-NIN-NP was confirmed by ATR-FTIR and NMR, which improved drug release profiles showing >90 % drug release that was 2.42-folds greater than NIN-NP lasting for five days. The DPPH assay showed that adding NAC increased the % inhibition of oxidation in blank-NP (from 54.59 % to 87.17 %) and NIN-NP (58.65 %-89.19 %). The MTT assay on A549 cells showed 67.57 % cell viability by NAC-NIN-NP with an IC50 value of 28 µg/mL. The NAC formulation reduced hydroxyproline content (56.77 µg/mL) compared to NIN-NP (69.48 µg/mL) in WI-38 cell lines. Meanwhile, the healthy cells count with NAC-NIN-NP was higher (5.104 × 103) than with NIN-NP (4.878 × 103). In Hoechst staining, no significant damage to DNA was observed by the drug or formulation. Therefore, NAC-NIN-NP could be a promising treatment option for IPF patients and can be studied further clinically.


Assuntos
Fibrose Pulmonar Idiopática , Nanopartículas , Quitosana/química , Acetilcisteína/química , Compostos de Sulfidrila/química , Fibrose Pulmonar Idiopática/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Tamanho da Partícula , Humanos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química
16.
Drug Deliv Transl Res ; 13(2): 419-432, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35994158

RESUMO

Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primarily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration site/ß-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alternative medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Humanos , Conservadores da Densidade Óssea/uso terapêutico , Densidade Óssea , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Regeneração Óssea , Difosfonatos/uso terapêutico
17.
Chem Phys Lipids ; 253: 105302, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031754

RESUMO

In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1-7 pH range. In silico studies to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and in vitro release study. Hydrogen bond formation between the pyrazolone ring of EDR and the -OH group of the phenanthrene ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and XRPD data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1 N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002 ± 0.942 %; Accelerated condition: 97.016 ± 1.110 %). Although coamorphous form and hydrogen bonding between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on oral absorption of EDR which will be studied in animals in the second part of this work.


Assuntos
Ácidos e Sais Biliares , Animais , Edaravone , Fenômenos Químicos , Solubilidade , Liberação Controlada de Fármacos
18.
Int J Pharm ; 643: 123250, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37481096

RESUMO

Progesterone is a natural steroidal sex hormone in the human body, mainly secreted through the adrenal cortex, ovary, and placenta. In humans, progesterone is essential for endometrium transformation in the uterus at the time of ovulation and maintenance of pregnancy. When the body cannot produce enough progesterone for specific ailments, it is administered via different routes such as oral, vaginal, transdermal, topical, parental, and intranasal routes. Although progesterone is commercially available in multiple conventional formulations, low solubility, less permeability and extensive hepatic first-pass metabolism are the major constraints to its delivery. These challenges can be overcome substantially by formulating progesterone into novel delivery systems like lipid carriers, polymeric carriers, hydrogels, several nanocarriers, depot and controlled release systems. Various research papers and patents have been published in the last two decades on progesterone delivery systems; clinical studies were conducted to establish safety and efficacy. This review is focused on the pharmacodynamic and pharmacokinetic parameters of progesterone, its delivery constraints, and various advanced delivery systems of progesterone.


Assuntos
Progesterona , Útero , Gravidez , Feminino , Humanos , Esteroides , Endométrio , Vagina
19.
Drug Deliv Transl Res ; 13(1): 18-36, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35637334

RESUMO

Diabetes is a chronic metabolic disease characterized by an excess of glucose in the blood. If the constant sugar level is not managed correctly in diabetic patients, it may lead to microvascular complications such as diabetic retinopathy, neuropathy, and nephropathy. There are several synthetic drugs for the management of diabetes; however, these drugs produce immense adverse effects in long-term use. Flavonoids are naturally occurring substances categorized in various classes. They are known for their diverse pharmacological actions, and one of them is prominent antihyperglycemic action and their activities in diabetic complications. In the last few decades, many research studies emphasized the potential of flavonoids in diabetes management. Nevertheless, most flavonoids are insoluble in water and cannot produce desired therapeutic action when administered in conventional dosage forms. To overcome this issue, flavonoids were formulated into different nanoformulations to enhance solubility, absorption, and therapeutic efficacy. This review article focuses on flavonoid nanoformulations and in vitro and in vivo studies reported to overcome diabetes mellitus and its complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Flavonoides/uso terapêutico , Projetos de Pesquisa , Diabetes Mellitus/tratamento farmacológico
20.
Tissue Cell ; 85: 102225, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801960

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose and is associated with high morbidity and mortality among the diabetic population. Uncontrolled chronic hyperglycaemia causes increased formation and accumulation of different oxidative and nitrosative stress markers, resulting in microvascular and macrovascular complications, which might seriously affect the quality of a patient's life. Conventional treatment strategies are confined to controlling blood glucose by regulating the insulin level and are not involved in attenuating the life-threatening complications of diabetes mellitus. Thus, there is an unmet need to develop a viable treatment strategy that could target the multi-etiological factors involved in the pathogenesis of diabetic complications. Stem cell therapy, a regenerative medicine approach, has been investigated in diabetic complications owing to their unique characteristic features of self-renewal, multilineage differentiation and regeneration potential. The present review is focused on potential therapeutic applications of stem cells in the treatment of microvascular diabetic complications such as nephropathy, retinopathy, and polyneuropathy.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Hiperglicemia , Humanos , Glicemia/metabolismo , Medicina Regenerativa , Complicações do Diabetes/terapia , Hiperglicemia/complicações , Hiperglicemia/terapia , Células-Tronco/metabolismo , Diabetes Mellitus/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA