Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; : 107659, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128728

RESUMO

Chloroplast ATP synthase (CFoCF1) synthesizes ATP by using a proton electrochemical gradient across the thylakoid membrane, termed ΔµH+, as an energy source. This gradient is necessary not only for ATP synthesis but also for reductive activation of CFoCF1 by thioredoxin, using reducing equivalents produced by the photosynthetic electron transport chain. ΔµH+ comprises two thermodynamic components: pH differences across the membrane (ΔpH) and the transmembrane electrical potential (ΔΨ). In chloroplasts, the ratio of these two components in ΔµH+ is crucial for efficient solar energy utilization. However, the specific contribution of each component to the reductive activation of CFoCF1 remains unclear. In this study, an in vitro assay system for evaluating thioredoxin-mediated CFoCF1 reduction is established, allowing manipulation of ΔµH+ components in isolated thylakoid membranes using specific chemicals. Our biochemical analyses revealed that ΔpH formation is essential for thioredoxin-mediated CFoCF1 reduction on the thylakoid membrane, whereas ΔΨ formation is nonessential.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38426808

RESUMO

Temperature is a critical factor for living organisms. Many microorganisms migrate toward preferable temperatures, and this behavior is called thermotaxis. In this study, the molecular and physiological bases for thermotaxis are examined in Chlamydomonas reinhardtii. A mutant with knockout of a transient receptor potential (TRP) channel, trp2-3, showed defective thermotaxis. The swimming velocity and ciliary beat frequency of wild-type Chlamydomonas increase with temperature; however, this temperature-dependent enhancement of motility was almost absent in the trp2-3 mutant. Wild-type Chlamydomonas showed negative thermotaxis, but mutants deficient in the outer or inner dynein arm showed positive thermotaxis and a defect in temperature-dependent increase in swimming velocity, suggesting involvement of both dynein arms in thermotaxis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA