RESUMO
BACKGROUND: Herpes virus entry mediator (HVEM) is a coinhibitory molecule which can both stimulate and inhibit host immune responses. Altered expression of HVEM and its ligands is associated with increased nosocomial infections in septic patients. We hypothesize critically ill trauma patients will display increased lymphocyte HVEM expression and that such alteration is predictive of infectious events. MATERIALS AND METHODS: Trauma patients prospectively enrolled from the ICU were compared with healthy controls. Leukocytes were isolated from whole blood, stained for CD3 (lymphocytes) and HVEM, and evaluated by flow cytometry. Charts were reviewed for injuries sustained, APACHE II score, hospital course, and secondary infections. RESULTS: Trauma patients (n = 31) were older (46.7 ± 2.4 versus 36.8 ± 2.1 y; P = 0.03) than healthy controls (n = 10), but matched for male sex (74% versus 60%; P = 0.4). Trauma patients had higher presenting WBC (13.9 ± 1.3 versus 5.6 ± 0.5 × 106/mL; P = 0.002), lower percentage of CD3+ lymphocytes (7.5% ± 0.8 versus 22.5% ± 0.9; P < 0.001), but significantly greater expression of HVEM+/CD3+ lymphocytes (89.6% ± 1.46 versus 67.3% ± 1.7; P < 0.001). Among trauma patients, secondary infection during the hospitalization was associated with higher APACHE II scores (20.6 ± 1.6 versus 13.6 ± 1.4; P = 0.03) and markedly lower CD3+ lymphocyte HVEM expression (75% ± 2.6 versus 93% ± 0.7; P < 0.01). CONCLUSIONS: HVEM expression on CD3+ cells increases after trauma. Patients developing secondary infections have less circulating HVEM+CD3+. This implies HVEM signaling in lymphocytes plays a role in maintaining host defense to infection in after trauma. HVEM expression may represent a marker of infectious risk as well as a potential therapeutic target, modulating immune responses to trauma.
Assuntos
Tolerância Imunológica , Infecções/imunologia , Linfócitos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Ferimentos e Lesões/imunologia , APACHE , Adulto , Biomarcadores/metabolismo , Complexo CD3/metabolismo , Estudos de Casos e Controles , Feminino , Voluntários Saudáveis , Humanos , Infecções/sangue , Infecções/diagnóstico , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Ferimentos e Lesões/sangue , Ferimentos e Lesões/complicaçõesRESUMO
Introduction: Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods: To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results: Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion: While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.
Assuntos
Animais Recém-Nascidos , Sepse Neonatal , Transdução de Sinais , Animais , Camundongos , Sepse Neonatal/imunologia , Sepse Neonatal/mortalidade , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Modelos Animais de Doenças , Feminino , Cardiopatias/etiologia , Cardiopatias/imunologia , Pulmão/imunologia , Pulmão/patologia , Sepse/imunologia , Sepse/metabolismoRESUMO
Introduction: The co-regulatory molecule, HVEM, can stimulate or inhibit immune function, but when co-expressed with BTLA, forms an inert complex preventing signaling. Altered HVEM or BTLA expression, separately have been associated with increased nosocomial infections in critical illness. Given that severe injury induces immunosuppression, we hypothesized that varying severity of shock and sepsis in murine models and critically ill patients would induce variable increases in HVEM/BTLA leukocyte co-expression. Methods: In this study, varying severities of murine models of critical illness were utilized to explore HVEM+BTLA+ co-expression in the thymic and splenic immune compartments, while circulating blood lymphocytes from critically ill patients were also assessed for HVEM+BTLA+ co-expression. Results: Higher severity murine models resulted in minimal change in HVEM+BTLA+ co-expression, while the lower severity model demonstrated increased HVEM+BTLA+ co-expression on thymic and splenic CD4+ lymphocytes and splenic B220+ lymphocytes at the 48-hour time point. Patients demonstrated increased co-expression of HVEM+BTLA+ on CD3+ lymphocytes compared to controls, as well as CD3+Ki67- lymphocytes. Both L-CLP 48hr mice and critically ill patients demonstrated significant increases in TNF-α. Discussion: While HVEM increased on leukocytes after critical illness in mice and patients, changes in co-expression did not relate to degree of injury severity of murine model. Rather, co-expression increases were seen at later time points in lower severity models, suggesting this mechanism evolves temporally. Increased co-expression on CD3+ lymphocytes in patients on non-proliferating cells, and associated TNF-α level increases, suggest post-critical illness co-expression does associate with developing immune suppression.
RESUMO
BACKGROUND: We hypothesized that implementation of new ultra-restrictive transfusion protocol in adult surgical intensive care units (SICU) was safe and feasible during pandemic-associated shortage crises. METHODS: Retrospective analysis two months pre- and post-implementation of ultra-restrictive transfusion protocol in March 2020 with hemoglobin cutoff of 6 g/dL (6.5 g/dL if ≥ 65 years old) for patients without COVID, active bleeding, or myocardial ischemia. RESULTS: We identified 16/93 and 27/168 patients PRE and POST meeting standard transfusion threshold (7 g/dL); within POST, 12 patients met ultra-restrictive cutoffs. There was no significant difference between PRE and POST in the rate of mortality, ischemic complications, or the number of transfusions per patient, however, the overall incidence of transfusion was lower in the POST group (7.1 vs 17.2%, p = 0.02). Patients received a mean (SD) of 4(3.8) and 2.4(1.5) PRBC transfusions pre- and post-implementation. Odds ratio of mortality in POST group was 0.62 (95%CI: 0.08-5.12) adjusted for age, sex, and SOFA score. CONCLUSIONS: Implementation of an ultra-restrictive transfusion protocol was feasible and effective as a blood- preservation strategy.
Assuntos
Transfusão de Eritrócitos , Adulto , Transfusão de Eritrócitos/métodos , Estudos de Viabilidade , Hemoglobinas/análise , Humanos , Unidades de Terapia Intensiva , Estudos RetrospectivosRESUMO
Sepsis is a systemic immune response to infection that is responsible for ~35% of in-hospital deaths and over 24 billion dollars in annual treatment costs. Strategic targeting of non-redundant negative immune checkpoint protein pathways can cater therapeutics to the individual septic patient and improve prognosis. B7-CD28 superfamily member V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an ideal candidate for strategic targeting in sepsis. We hypothesized that immune checkpoint regulator, VISTA, controls T-regulatory cells (Treg), in response to septic challenge, thus playing a protective role/reducing septic morbidity/mortality. Further, we investigated if changes in morbidity/mortality are due to a Treg-mediated effect during the acute response to septic challenge. To test this, we used the cecal ligation and puncture model as a proxy for polymicrobial sepsis and assessed the phenotype of CD4+ Tregs in VISTA-gene deficient (VISTA-/-) and wild-type mice. We also measured changes in survival, soluble indices of tissue injury, and circulating cytokines in the VISTA-/- and wild-type mice. We found that in wild-type mice, CD4+ Tregs exhibit a significant upregulation of VISTA which correlates with higher Treg abundance in the spleen and small intestine following septic insult. However, VISTA-/- mice have reduced Treg abundance in these compartments met with a higher expression of Foxp3, CTLA4, and CD25 compared to wild-type mice. VISTA-/- mice also have a significant survival deficit, higher levels of soluble indicators of liver injury (i.e., ALT, AST, bilirubin), and increased circulating proinflammatory cytokines (i.e., IL-6, IL-10, TNFα, IL-17F, IL-23, and MCP-1) following septic challenge. To elucidate the role of Tregs in VISTA-/- sepsis mortality, we adoptively transferred VISTA-expressing Tregs into VISTA-/- mice. This adoptive transfer rescued VISTA-/- survival to wild-type levels. Taken together, we propose a protective Treg-mediated role for VISTA by which inflammation-induced tissue injury is suppressed and improves survival in early-stage murine sepsis. Thus, enhancing VISTA expression or adoptively transferring VISTA+ Tregs in early-stage sepsis may provide a novel therapeutic approach to ameliorate inflammation-induced death.
Assuntos
Proteínas de Checkpoint Imunológico , Sepse , Animais , Citocinas/metabolismo , Humanos , Inflamação , Camundongos , Linfócitos T ReguladoresRESUMO
Objective: We describe a structured approach to developing a standardized curriculum for surgical trainees in East, Central, and Southern Africa (ECSA). Summary Background Data: Surgical education is essential to closing the surgical access gap in ECSA. Given its importance for surgical education, the development of a standardized curriculum was deemed necessary. Methods: We utilized Kern's 6-step approach to curriculum development to design an online, modular, flipped-classroom surgical curriculum. Steps included global and targeted needs assessments, determination of goals and objectives, the establishment of educational strategies, implementation, and evaluation. Results: Global needs assessment identified the development of a standardized curriculum as an essential next step in the growth of surgical education programs in ECSA. Targeted needs assessment of stakeholders found medical knowledge challenges, regulatory requirements, language variance, content gaps, expense and availability of resources, faculty numbers, and content delivery method to be factors to inform curriculum design. Goals emerged to increase uniformity and consistency in training, create contextually relevant material, incorporate best educational practices, reduce faculty burden, and ease content delivery and updates. Educational strategies centered on developing an online, flipped-classroom, modular curriculum emphasizing textual simplicity, multimedia components, and incorporation of active learning strategies. The implementation process involved establishing thematic topics and subtopics, the content of which was authored by regional surgeon educators and edited by content experts. Evaluation was performed by recording participation, soliciting user feedback, and evaluating scores on a certification examination. Conclusions: We present the systematic design of a large-scale, context-relevant, data-driven surgical curriculum for the ECSA region.
RESUMO
Checkpoint regulators are a group of membrane-bound receptors or ligands expressed on immune cells to regulate the immune cell response to antigen presentation and other immune stimuli, such as cytokines, chemokines, and complement. In the context of profound immune activation, such as sepsis, the immune system can be rendered anergic by these receptors to prevent excessive inflammation and tissue damage. If this septic immunosuppression is prolonged, the host is unable to mount the appropriate immune response to a secondary insult or infection. This article describes the manner in which major regulators in the B7-CD28 family and their ligands mediate immunosuppression in sepsis.