Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Sci Food Agric ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031689

RESUMO

BACKGROUND: The cryoprotective effect of xylooligosaccharide (XO) and kappa-carrageenan (KC) mixture on silver carp proteins in fluctuated frozen storage from 4 to -18 °C was analyzed. Positive control as a conventional cryoprotectant mixture of sucrose (4%) and sorbitol (4%), KC (3%) and XO/KC (3%) treatments were incorporated in silver carp surimi and myofibrillar proteins to analyze the water mobility and its influence on structural attributes. RESULTS: The temperature fluctuation significantly increased the structural alteration in samples with no treatments due to oxidative changes, protein denaturation and recrystallization. Meanwhile, the mixture of XO and KC (XO/KC 3%) significantly reduced the tertiary and secondary structural alterations by preventing the oxidative changes in α-helix and tryptophan (Trp) residues. Moreover, XO/KC (3%) inhibited water mobility, hindering the T22 relaxation time, as compared to the samples added with KC (3%) and the positive control. Interestingly, the XO/KC (3%) mixture significantly reduced the formation of extracellular spaces and recrystallization by restricting the partial dehydration of muscles and extracellular solution concentration. CONCLUSION: From the current results, it can be concluded that the XO/KC mixture could be efficient in protecting aquatic food proteins during fluctuating frozen storage by preventing the exposure of Trp residues and α-helix contents. Moreover, XO/KC restricted the water mobility by establishing a bond and making water unavailable for crystallization and recrystallization. Therefore, XO/KC could be used as an effective mixture to prevent fluctuated and frozen storage changes in aquatic foods. © 2024 Society of Chemical Industry.

2.
Compr Rev Food Sci Food Saf ; 23(2): e13313, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470221

RESUMO

Polyphenols are well documented against the inhibition of foodborne toxicants in meat, such as heterocyclic amines, Maillard's reaction products, and protein oxidation, by means of their radical scavenging ability, metal chelation, antioxidant properties, and ability to form protein-polyphenol complexes (PPCs). However, their thermal stability, low polarity, degree of dispersion and polymerization, reactivity, solubility, gel forming properties, low bioaccessibility index during digestion, and negative impact on sensory properties are all questionable at oil-in-water interface. This paper aims to review the possibility and efficacy of polyphenols against the inhibition of mutagenic and carcinogenic oxidative products in thermally processed meat. The major findings revealed that structure of polyphenols, for example, molecular size, no of substituted carbons, hydroxyl groups and their position, sufficient size to occupy reacting sites, and ability to form quinones, are the main technical points that affect their reactivity in order to form PPCs. Following a discussion of the future of polyphenols in meat-based products, this paper offers intervention strategies, such as the combined use of food additives and hydrocolloids, processing techniques, precursors, and structure-binding relationships, which can react synergistically with polyphenols to improve their effectiveness during intensive thermal processing. This comprehensive review serves as a valuable source for food scientists, providing insights and recommendations for the appropriate use of polyphenols in meat-based products.


Assuntos
Produtos da Carne , Carne , Aminas , Antioxidantes , Carcinógenos
3.
Crit Rev Food Sci Nutr ; 63(22): 5874-5889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34996325

RESUMO

Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.


Assuntos
Crioprotetores , Alimentos Congelados , Congelamento , Crioprotetores/química , Temperatura
4.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995253

RESUMO

There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.

5.
Crit Rev Food Sci Nutr ; 63(24): 6687-6709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35156465

RESUMO

Traditional inorganic aerogels sustainability, biodegradability, and environmental safety concerns have driven researchers to find their safe green alternatives. Recently, interest in the application of bio-aerogels has rapidly increased in the food industry due to their unique characteristics such as high specific surface area and porosity, ultralow density, tunable pore size and morphology, and superior properties (physicochemical, mechanical, and functional). Bio-aerogels, a special category of highly porous unique materials, fabricated by the sol-gel method followed by drying processes, comprising three-dimensional networks of interconnected biopolymers (e.g., polysaccharides and proteins) with numerous air-filled pores. The production of bio-aerogels begins with the formation of a homogeneously dispersed precursor solution, followed by gelation and wet gel drying procedures by employing special drying techniques including atmospheric-, freeze-, and supercritical drying. Due to their special properties, bio-aerogels have emerged as sustainable biomaterial for many industrial applications, i.e., encapsulation and controlled delivery, active packaging, heavy metals separation, water and air filtration, oleogels, and biosensors. Bio-aerogels are low-cost, biocompatible, and biodegradable sustainable material that can be used in improving the processing, storage, transportation, and bioavailability of food additives, functional ingredients, and bioactive substances for their health benefits with enhanced shelf-life.


Assuntos
Polissacarídeos , Água , Polissacarídeos/química , Biopolímeros/química , Dessecação , Porosidade
6.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272493

RESUMO

Vegetable oils are extracted from oilseeds, fruits and other parts of plants. The method used in oil extraction is of great importance, as it affects both the quality of the final product and the environment. It is desirable that the extraction method be minimally costly, fast, environmentally friendly, and produce oil of high quality and quantity. Common oil extraction methods are mechanical pressing and solvent extraction, and these methods have advantages and disadvantages over each other. Mechanical extraction and solvent extraction are controversial due to poor product quality and high environmental impacts. This review presents applications where conventional oil extraction processes are assisted by microwave or ultrasound. It is necessary to evaluate the impact of ultrasound and microwave-assisted extraction on the quality of the extracted oil and also to compare the results with those of conventional extraction methods. For this purpose, this review discusses the effects of microwave and ultrasound-assisted extraction on the physicochemical, oxidation indices, bioactive compounds, and antioxidant properties of oil extracted from oil seeds and fruits. Furthermore, this review provides readers with in-depth information on the mechanisms involved, their use, and the impact of operating conditions. The yield and quality of the oil obtained by these processes can vary depending on parameters such as microwave power, ultrasound power, processing time, and temperature. Finally, the review also discusses the challenges and advantages of the industrial application of these technologies.

7.
Compr Rev Food Sci Food Saf ; 22(3): 1986-2016, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939688

RESUMO

Recently, increasing studies have shown that the functional properties of proteins, including emulsifying properties, antioxidant properties, solubility, and thermal stability, can be improved through glycation reaction under controlled reaction conditions. The use of glycated proteins to stabilize hydrophobic active substances and to explore the gastrointestinal fate of the stabilized hydrophobic substances has also become the hot spot. Therefore, in this review, the effects of glycation on the structure and function of food proteins and the physical stability and oxidative stability of protein-stabilized oil/water emulsions were comprehensively summarized and discussed. Also, this review sheds lights on the in vitro digestion characteristics and edible safety of emulsion stabilized by glycated protein. It can further serve as a research basis for understanding the role of structural features in the emulsification and stabilization of glycated proteins, as well as their utilization as emulsifiers in the food industry.


Assuntos
Emulsificantes , Reação de Maillard , Emulsões/química , Emulsificantes/química , Proteínas , Antioxidantes
8.
J Food Sci Technol ; 60(7): 2031-2041, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37415847

RESUMO

This study aimed to prepare a stirred type of fat-free yogurt from enzymatically hydrolyzed potato powder (EHPP) and skimmed milk powder (SMP) without changing its quality and consumer acceptance. The yogurt formulations prepared contained different amount of EHPP 0, 10, 25 and 50% and were stored for 28 days at 4 °C and observed that with increasing substitution ratio, acid production was increased while the viability of lactic acid bacteria was decreased after 28 days of storage at 4 °C. The antioxidant activities (2-Diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) of the yogurt were increased with increasing EHPP over the storage period. The yogurt formulations having 25 to 50% EHPP has the highest DPPH free radical scavenging activity and FRAP values. Water holding capacity (WHC) was decreased over the storage period with 25% EHPP. The hardness, adhesiveness and gumminess were decreased while no significant change was found in springiness with EHPP addition over the storage period. The rheological analysis showed an elastic behavior of yogurt gels with EHPP supplementation. The sensory results of yogurt containing 25% EHPP have the highest values of taste and acceptance. Yogurt in combination with EHPP and SMP has the higher levels of WHC than non-supplemented yogurt and better stability was recorded during storage. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05737-9.

9.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014396

RESUMO

Fresh fruits and vegetables, being the source of important vitamins, minerals, and other plant chemicals, are of boundless importance these days. Although in agriculture, the green revolution was a milestone, it was accompanied by the intensive utilization of chemical pesticides. However, chemical pesticides have hazardous effects on human health and the environment. Therefore, increasingly stimulating toward more eco-friendly and safer alternatives to prevent postharvest losses and lead to improving the shelf life of fresh fruits and vegetables. Proposed alternatives, natural plant extracts, are very promising due to their high efficacy. The plant-based extract is from a natural source and has no or few health concerns. Many researchers have elaborated on the harmful effects of synthetic chemicals on human life. People are now much more aware of safety and health concerns than ever before. In the present review, we discussed the latest research on natural alternatives for chemical synthetic pesticides. Considering that the use of plant-based extracts from aloe vera, lemongrass, or neem is non-chemical by-products of the fruits and vegetable industry, they are proved safe for human health and may be integrated with economic strategies. Such natural plant extracts can be a good alternative to chemical pesticides and preservatives.


Assuntos
Praguicidas , Verduras , Agricultura , Frutas , Humanos , Praguicidas/farmacologia , Extratos Vegetais/farmacologia
10.
Compr Rev Food Sci Food Saf ; 21(1): 321-339, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766434

RESUMO

Freeze-induced changes including protein denaturation, ice crystals formation and lipid oxidation are mainly responsible for the quality deterioration persistent in aquatic foods. Here, for the first time, the cryoprotectants with trifunctional properties have been suggested for aquatic food cryopreservation and have exhibited exceptional cryoprotective abilities. In this study, in-depth discussion of protein denaturation, ice crystal formation and lipid oxidation is added in order to understand their mechanism, emphasizing on the necessity and use of trifunctional cryoprotectants in aquatic foods during frozen storage. Trifunctional cryoprotectants have strong abilities to prevent the formation of malondihaldehyde and aldehydes resulting from lipid oxidation, which further interact with proteins, subsequently lead to protein denaturation. Besides these all cryoprotective properties, ice crystal binding abilities distinguish trifunctional cryoprotectants from conventional cryoprotectants. Moreover, this study added with recent advances in cryoprotectants including antifreeze proteins and protein hydrolysates with their role in retarded freeze-induced changes. This study concluded that trifunctional cryoprotectants are effective owing to their hydrophilic amino acid chains, radical scavenging, water entrapping abilities, as well as the hydroxyl groups, which interact at the functional sites of protein molecules. Furthermore, polysaccharides and protein hydrolysates are the potential ingredients with trifunctional cryoproperties. However, more scientific research is required for material optimization to attain the desired level of cryoprotection.


Assuntos
Gelo , Hidrolisados de Proteína , Crioprotetores/química , Crioprotetores/farmacologia , Congelamento , Lipídeos , Proteínas
11.
Appl Microbiol Biotechnol ; 105(9): 3457-3470, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33876282

RESUMO

Although great advances have been made on large-scale manufacturing of vaccines and antiviral-based drugs, viruses persist as the major cause of human diseases nowadays. The recent pandemic of coronavirus disease-2019 (COVID-19) mounts a lot of stress on the healthcare sector and the scientific society to search continuously for novel components with antiviral possibility. Herein, we narrated the different tactics of using biopeptides as antiviral molecules that could be used as an interesting alternative to treat COVID-19 patients. The number of peptides with antiviral effects is still low, but such peptides already displayed huge potentials to become pharmaceutically obtainable as antiviral medications. Studies showed that animal venoms, mammals, plant, and artificial sources are the main sources of antiviral peptides, when bioinformatics tools are used. This review spotlights bioactive peptides with antiviral activities against human viruses, especially the coronaviruses such as severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2 or SARS-nCOV19). We also showed the data about well-recognized peptides that are still under investigations, while presenting the most potent ones that may become medications for clinical use.


Assuntos
Antivirais , COVID-19 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Peptídeos , Estudos Prospectivos , SARS-CoV-2
12.
Mar Drugs ; 19(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203532

RESUMO

Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.


Assuntos
Alcaloides/metabolismo , Organismos Aquáticos , Alcaloides/química , Animais , Modelos Animais , Relação Estrutura-Atividade
13.
J Sci Food Agric ; 100(10): 4005-4011, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32337732

RESUMO

BACKGROUND: Potato powder, a rich source of high-quality protein and starch, plays an important role in the production of functional foods. In this study, ball-mill processed potato powders with different particle sizes (278, 208, 129, and 62 µm) were analyzed in terms of physicochemical, pasting, rheological, and digestive properties. RESULTS: Scanning electron microscopy and laser diffraction analysis of the samples revealed mono-model particle-size distributions. X-ray diffraction analysis confirmed structure destruction of starch pellets. Proximate composition and physical property analysis showed an increase in the water, ash, protein, and starch content. Meanwhile, the water solubility index and swelling power values were found to increase with decreasing grain size, and so were the brightness (L*) and redness (b*) values of the potato powders. With particle size reduced to 129 µm, large changes were observed in gelatinization properties, such as peak viscosity, trough viscosity, breakdown viscosity, and final viscosity. Oscillatory rheology results also showed that, with the decrease in particle size, the storage modulus (G') and loss modulus (G″) improved, with highest storage modulus (G') observed in the 129 µm particle size. The hydrolysis rate and glycemic index also increased in the 129 µm potato powder. CONCLUSION: The results provide information that could be useful for improving quality characteristics by using specific grain sizes in the development of potato-based products such as gluten-free products and ethnic food products with particular functional and rheological properties. © 2020 Society of Chemical Industry.


Assuntos
Solanum tuberosum/química , Solanum tuberosum/metabolismo , Digestão , Humanos , Tamanho da Partícula , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pós/química , Pós/metabolismo , Reologia , Solubilidade , Amido/química , Amido/metabolismo , Viscosidade
14.
Food Chem ; 438: 138006, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37989023

RESUMO

The co-pigmentation behaviour of RuBisCo proteins (with different concentrations) on peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside (P3C5G, extracted from Rosetta potato's peels) conjugates in isotonic sport drinks (ISD) was examined using multispectral, thermal stability kinetics, and libDock-based molecular docking approaches. The colorant effects of RuBisCo on P3C5G were also studied in spray-dried microencapsulated ISD-models. RuBisCo, especially at a concentration of 10 mg/mL in ISD, showed a co-pigmentation effect on the color of P3C5G, mostly owing to its superior hyperchromicity, pKH-levels, and thermal stability. Results from multispectral approaches also revealed that RuBisCo could noncovalently interact with P3C5G as confirmed by libDock findings, where P3C5G strongly bound with RuBisCo via H-bonding and π-π forces, thereby altering its secondary structure. RuBisCo also preserved color of P3C5G in ISD-powdered models. These detailed results imply that RuBisCo could be utilized in ISD-liquid and powder models that might industrially be applied as potential food colorants in products under different conditions.


Assuntos
Antocianinas , Ribulose-Bifosfato Carboxilase , Simulação de Acoplamento Molecular , Antocianinas/química , Glucosídeos/química , Cinética
15.
Fitoterapia ; 166: 105470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36914012

RESUMO

Medicinal fungi are beneficial to human health and it reduces the risk of chronic diseases. Triterpenoids are polycyclic compounds derived from the straight-chain hydrocarbon squalene, which are widely distributed in medicinal fungi. Triterpenoids from medicinal fungal sources possess diverse bioactive activities such as anti-cancer, immunomodulatory, anti-inflammatory, anti-obesity. This review article describes the structure, fermentation production, biological activities, and application of triterpenoids from the medicinal fungi including Ganoderma lucidum, Poria cocos, Antrodia camphorata, Inonotus obliquus, Phellinus linteus, Pleurotus ostreatus, and Laetiporus sulphureus. Besides, the research perspectives of triterpenoids from medicinal fungi are also proposed. This paper provides useful guidance and reference for further research on medicinal fungi triterpenoids.


Assuntos
Triterpenos , Humanos , Triterpenos/farmacologia , Fermentação , Estrutura Molecular
16.
Foods ; 12(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685127

RESUMO

In the current study, apple-pectin-based novel nanofibers were fabricated by electrospinning. Polyvinyl alcohol (PVA) and apple pectin (PEC) solution were mixed to obtain an optimized ratio for the preparation of electrospun nanofibers. The obtained nanofibers were characterized for their physiochemical, mechanical and thermal properties. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Furthermore, an assay of the in vitro viability of free and encapsulated probiotics was carried out under simulated gastrointestinal conditions. The results of TGA revealed that the PVA/PEC nanofibers had good thermal stability. The probiotics encapsulated by electrospinning showed a high survival rate as compared to free cells under simulated gastrointestinal conditions. Furthermore, encapsulated probiotics and free cells showed a 3 log (cfu/mL) and 10 log (cfu/mL) reduction, respectively, from 30 to 120 min of simulated digestion. These findings indicate that the PVA/PEC-based nanofibers have good barrier properties and could potentially be used for the improved viability of probiotics under simulated gastrointestinal conditions and in the development of functional foods.

17.
Food Res Int ; 169: 112933, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254359

RESUMO

The effect of low voltage electrostatic field combined with partial freezing (LVEF- PF) treatment on storage quality and microbial community of large yellow croaker was studied. Three different methods including chilled (C), partial freezing (PF) and 6 kV/m electrostatic field combined partial freezing storage were used to preserve large yellow croaker for 18 days. Total viable counts (TVC), sensory evaluation, and physiochemical index including pH, total volatile basic nitrogen (TVB-N), K value and centrifugal loss were examined. During storage, the large yellow croaker was susceptible to microbial growth and spoilage. However, LVEF-PF treatment was found to be effective in enhancing sensory quality, inhibiting microbial growth, and maintaining myofibril microstructure. Low field nuclear magnetic resonance showed that LVEF-PF treatment reduced the migration of immobilized water to free water. At 18th day, the TVC value of LVEF-PF, PF and chilled group were 3.56 log CFU/g, 5.11 log CFU/g, 7.73 log CFU/g, respectively. Therefore, from the results of TVB-N and TVC value, the shelf life of LVEF-PF group was at least 3 days longer than PF group, and 6 days longer than the chilled group. High-throughput sequencing showed that the microbial community diversity significantly decreased during storage. The predominant bacteria in chilled, PF, LVEF-PF group at 18th day were Pseudomonas, Psychrobacter and Shewanella, respectively, and the relative abundance of spoilage bacteria such as Pseudomonas and Psychrobacter were reduced by LVEF-PF treatment, that corresponding with lower values of TVB-N and TVC value. LVEF-PF treatment could be used as a new processing and storage method to delay deterioration and prolong shelf life of large yellow croaker.


Assuntos
Microbiota , Perciformes , Animais , Congelamento , Eletricidade Estática , Bactérias
18.
Adv Food Nutr Res ; 103: 361-395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36863839

RESUMO

The problem of environmental pollution with plastic is becoming more and more acute every year. Due to the low rate of decomposition of plastic, its particles get into food and harm the human body. This chapter focuses on the potential risks and toxicological effects of both nano and microplastics on human health. The main places of distribution of various toxicants along with the food chain have been established. The effects of some examples of the main sources of micro/nanoplastics on the human body are also emphasised. The processes of entry and accumulation of micro/nanoplastics are described, and the mechanism of accumulation that occurs inside the body is briefly explained. Potential toxic effects reported from studies on various organisms are highlighted as well.


Assuntos
Microplásticos , Plásticos , Humanos , Alimentos , Cadeia Alimentar , Medição de Risco
19.
Food Chem ; 406: 135062, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36462361

RESUMO

The labeled quantitative proteomic method was used to study the changes in muscle proteins of large yellow croaker (Pseudosciaena crocea) treated with electrolytic water (EW) and chitosan (CHI) combined preservation during 12 days of refrigeration storage (4 °C). The analysis indicated that the freshness instructed by total viable count (TVC), total volatile basic nitrogen (TVB-N) and K value was significantly maintained after combined preservation during storage at 4 °C for 12 days (CS12). Furthermore, 46 differentially abundant proteins (DAPs) were detected in storage at 4 °C for 12 days (S12) compared to the freshness group (F), which bioinformatics confirmed were mainly skeletal proteins and enzymes. Correlation analysis showed that 19 highly correlated DAPs could be used as potential protein markers of freshness. Changes in the relation of freshness and protein were shown in further correlative analysis of F and CS12, which were caused by combined preservation. Therefore, combined preservation is promising in the quality and stability of large yellow croakers.


Assuntos
Quitosana , Perciformes , Animais , Água , Quitosana/farmacologia , Proteoma , Proteômica
20.
Biology (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37106811

RESUMO

This study determined the effect of Bacillus XZM extracellular polymeric substances (EPS) production on the arsenic adsorption capacity of the Biochar-Bacillus XZM (BCXZM) composite. The Bacillus XZM was immobilized on corn cobs multifunction biochar to generate the BCXZM composite. The arsenic adsorption capacity of BCXZM composite was optimized at different pHs and As(V) concentrations using a central composite design (CCD)22 and maximum adsorption capacity (42.3 mg/g) was attained at pH 6.9 and 48.9 mg/L As(V) dose. The BCXZM composite showed a higher arsenic adsorption than biochar alone, which was further confirmed through scanning electron microscopy (SEM) micrographs, EXD graph and elemental overlay as well. The bacterial EPS production was sensitive to the pH, which caused a major shift in the -NH, -OH, -CH, -C=O, -C-N, -SH, -COO and aromatic/-NO2 peaks of FTIR spectra. Regarding the techno economic analysis, it was revealed that USD 6.24 are required to prepare the BCXZM composite to treat 1000 gallons of drinking water (with 50 µg/L of arsenic). Our findings provide insights (such as adsorbent dose, optimum operating temperature and reaction time, and pollution load) for the potential application of the BCXZM composite as bedding material in fixed-bed bioreactors for the bioremediation of arsenic-contaminated water in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA