Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phys Chem Chem Phys ; 26(7): 6058-6067, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295376

RESUMO

Metal halide perovskites show remarkable optical properties and useful applications in optoelectronic devices. However, the instability of three-dimensional (3D) metal halide perovskites limits their applications, leading to the emergence of more stable two-dimensional (2D) metal halide perovskites. Herein, we present a facile synthesis of the 2D hybrid metal halide perovskite (EDA)(MA)n-1PbnBr3n+1 (EDA: ethylene diammonium, MA: methylammonium), where n = 1-6, and MAPbBr3 perovskite layers using an anti-solvent co-precipitation technique. The synthesized materials exhibited tunable optical properties, and the color emissions of pure EDAPbBr4 and (EDA)(MA)2Pb3Br10 perovskites were successfully tailored by altering halide anion layers. The band gap decreases as the value of n in the (EDA)(MA)n-1PbnBr3n+1 compound increases from 1 to 6. The as-prepared materials were characterized using X-ray diffraction (XRD) technique, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Finally, the stability of the 2D hybrid metal halide perovskite structures was evaluated under ambient conditions over different periods. Their tunable color emission was investigated and robust fluorescence was observed after 55 days. Thus, this study provides valuable insights into the synthesis and characterization of 2D hybrid metal halide perovskites for tunable color emission, highlighting their potential for use in various optoelectronic applications.

2.
Chem Rec ; 22(1): e202100150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418290

RESUMO

Perovskite solar cells (PSC) have shown a rapid increase in efficiency than other photovoltaic technology. Despite its success in terms of efficiency, this technology is inundated with numerous challenges hindering the progress towards commercial viability. The crucial one is the anomalous hysteresis observed in the photocurrent density-voltage (J-V) response in PSC. The hysteresis phenomenon in the solar cell presents a challenge for determining the accurate power conversion efficiency of the device. A detailed investigation of the fundamental origin of hysteresis behavior in the device and its associated mechanisms is highly crucial. Though numerous theories have been proposed to explain the causes of hysteresis, its origin includes slow transient capacitive current, trapping, and de-trapping process, ion migrations, and ferroelectric polarization. The remaining issues and future research required toward the understanding of hysteresis in PSC device is also discussed.

3.
Appl Opt ; 61(31): 9186-9192, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607052

RESUMO

Toxic and low-pressure deep-ultraviolet (DUV) mercury lamps have been used widely for applications of surface disinfection and water sterilization. The exposure of pathogens to 254 nm DUV radiations has been proven to be an effective and environmentally safe way to inactivate germs as well as viruses in short time. To replace toxic mercury DUV lamps, an n +-A l G a N tunnel junction (TJ)-based DUV light-emitting diode (LED) at 254 nm emission has been investigated. The studied conventional LED device has maximum internal quantum efficiency (IQE) of 50% with an efficiency droop of 18% at 200A/c m 2. In contrast, the calculated results show that a maximum IQE of 82% with a 3% efficiency droop under a relatively higher injection current was estimated by employing a 5 nm thin n +-A l G a N TJ with a 0.70 aluminum molar fraction. In addition, the TJ LED emitted power has been improved significantly by 2.5 times compared with a conventional LED structure. Such an efficient n +-A l G a N TJ-based DUV LED at 254 nm emission might open a new way, to the best of our knowledge, for the development of safe and efficient germicidal irradiation sources.


Assuntos
Mercúrio , Raios Ultravioleta , Alumínio , Compostos de Alumínio
4.
BMC Complement Altern Med ; 19(1): 256, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521162

RESUMO

BACKGROUND: Arisaema jacquemontii is traditionally used in treatment of different diseases. In this study, phytochemical, in vitro biological and chemo-preventive screening of A. jacquemontii was carried out to explore its pharmacological potential. METHODS: The dried tuber of A. jacquemontii was extracted in 11 organic solvent mixture of different polarity. The extracts were screened for phytochemical assays (phenolics and flavonoids), antioxidants potential (free radical scavenging activity, total antioxidant activity, reducing power), biological activities (antibacterial, antifungal, cytotoxic, antileishmanial, protein kinase inhibition), and chemopreventive activities using different cell lines through standard protocols. RESULTS: Significant amount phenolic contents were determined in EtOH and MeOH extracts (210.3 ± 3.05 and 193.2 ± 3.15 µg GAE/mg, respectively). Maximum flavonoid content was determined in MeOH extract (22.4 ± 4.04 µg QE/mg). Noteworthy, DPPH scavenging activity was also recorded for MeOH extract (87.66%) followed by MeOH+EtOAc extract (85.11%). Considerable antioxidant capacity (7.8 ± 0.12 µg AAE/mg) and reducing power (3.1 ± 0.15 µg AAE/mg) was observed in extract of MeOH. The LC50 against brine shrimp and leishmanial parasite was found 9.01 and 12.87 µg/mL for n-Hex and CHCl3 extracts, respectively. The highest zone of inhibition against Streptomyces hyphae formation (12.5 ± 1.77 mm) by n-Hex extract. Growth zone of inhibition 13.8 ± 1.08 mm was recorded for EtOAc and MeOH extracts, respectively against Micrococcus luteus while 10.0 ± 0.11 mm for MeOH extract against Aspergillus flavus. In-vitro cytotoxic assay showed that n-Hex extract had higher cytotoxicity against DU-145 prostate cancer and HL-60 cancer cell lines. NF-kB and MTP potential showed 34.01 and 44.87 µg/mL for n-Hex and CHCl3 extracts, respectively in chemo-preventive potential. CONCLUSION: The study concludes that Arisaema jacquemontii bears significant phytochemical activity and pharmacological activities, this plant can be further explored for isolation of active component against a number of aliments.


Assuntos
Anti-Infecciosos/química , Arisaema/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Animais , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Artemia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Tubérculos/química
5.
Phys Chem Chem Phys ; 18(31): 21629-39, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27432518

RESUMO

Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells.

6.
Nanotechnology ; 26(10): 105401, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25687409

RESUMO

Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 µm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed.

7.
Nanotechnology ; 26(49): 494002, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26574237

RESUMO

The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH3NH3PbX3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs' patterning over substrates is resolved by using precise Nd:YVO4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH3NH3PbI3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices.

8.
Biosensors (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37185491

RESUMO

Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.


Assuntos
Técnicas Biossensoriais , Nanofibras , Nanoestruturas , Nanotubos de Carbono , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos
9.
Nanomicro Lett ; 15(1): 45, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752927

RESUMO

Construction of advanced electromagnetic interference (EMI) shielding materials with miniaturized, programmable structure and low reflection are promising but challenging. Herein, an integrated transition-metal carbides/carbon nanotube/polyimide (gradient-conductive MXene/CNT/PI, GCMCP) aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection. The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly (amic acid) inks with different CNT contents, where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer. In addition, the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections. Consequently, the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency (68.2 dB) and low reflection (R = 0.23). Furthermore, the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission, which shows a prosperous application prospect in defense industry and aerospace.

10.
Microsc Res Tech ; 86(9): 1132-1143, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477113

RESUMO

The synergistic effect of bimetallic co-incorporated metal oxides have gained enormous attention due to their unique optoelectronic properties. Herein, we present the green synthesis of ZnO, Cu-incorporated ZnO, Mn-incorporated ZnO, and Cu-Mn co-incorporated nanoparticles (ZnO NPs, CuZnO NPs, MnZnO NPs, MnCuZnO NPs) for antimicrobial and photocatalytic reduction applications using corn silk extract and industrial metal wastes. The as-synthesized NPs were characterized by using UV-visible absorption spectroscopy (UV-Vis), photoluminescence (PL) spectroscopy, Fourier-transformed infrared spectroscopy (FT-IR), powdered x-ray diffraction (XRD), and scanning electron microscopy (SEM). CuZnO, MnZnO, and MnCuZnO NPs efficiently inhibited bacterial culture growth. The photocatalytic reduction activity of as-synthesized NPs against the different concentrations of 4-nitrophenol (4-NP) in water was also investigated. CuZnO and MnCuZnO nanoparticles were to be efficient photocatalysts for reducing 4-NP into 4-aminophenol (4-AP). RESEARCH HIGHLIGHTS: Green synthesis of nanomaterials by agricultural and industrial wastes Cu and Mn co-incorporated ZnO NPs have shown good photocatalysis and antimicrobial activities Green approach for waste conversion to value-added products.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Difração de Raios X , Extratos Vegetais/química
11.
RSC Adv ; 12(13): 7661-7670, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424718

RESUMO

ZnO is one of the most promising and efficient semiconductor materials for various light-harvesting applications. Herein, we reported the tuning of optical properties of ZnO nanoparticles (NPs) by co-incorporation of Ni and Ag ions in the ZnO lattice. A sonochemical approach was used to synthesize pure ZnO NPs, Ni-ZnO, Ag-ZnO and Ag/Ni-ZnO with different concentrations of Ni and Ag (0.5%, 2%, 4%, 8%, and 15%) and Ni doped Ag-ZnO solid solutions with 0.25%, 0.5%, and 5% Ni ions. The as-synthesized Ni-Ag-ZnO solid solution NPs were characterized by powdered X-ray diffraction (pXRD), FT-IR spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), UV-vis (UV) spectroscopy, and photoluminescence (PL) spectroscopy. Ni-Ag co-incorporation into a ZnO lattice reduces charge recombination by inducing charge trap states between the valence and conduction bands of ZnO and interfacial transfer of electrons. The Ni doped Ag-ZnO solid solution NPs have shown superior 4-nitrophenol reduction compared to pure ZnO NPs which do not show this reaction. Furthermore, a methylene blue (MB) clock reaction was also performed. Antibacterial activity against E. coli and S. aureus has inhibited the growth pattern of both strains depending on the concentration of catalysts.

12.
ACS Omega ; 6(50): 34744-34751, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963957

RESUMO

Here, we report water purification through novel polyvinyl alcohol (PVA)-based carbon nanofibers synthesized through the electrospinning technique. In our novel approach, we mix PVA and tetraethyl orthosilicate (TEOS) with green tea solutions with different concentrations to synthesize carbon-based nanofibers (CNFs) and further calcine at 280 °C for carbonization. The scanning electron microscopy (SEM) results show the diameter of the nanofibers to be ∼500 nm, which decreases by about 50% after carbonization, making them more suitable candidates for the filtration process. Next, using these carbon nanofibers, we prepare filters for water purification. The synthesized CNF filters show excellent performance and successful removal of contaminants from the water by analyzing the CNF-based filters before and after the filtration of water through SEM and energy-dispersive X-ray (EDX) spectroscopy. Our SEM and EDX results indicate the presence of various nanoparticles consisting of different elements such as Mg, Na, Ti, S, Si, and Fe on the filters, after the filtration of water. Additionally, the SEM results show that PVA and TEOS concentrations play an important role in the formation, uniformity, homogeneity, and particularly in the reduction of the nanofiber diameter.

13.
Data Brief ; 18: 860-863, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900250

RESUMO

In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO2-TiO2) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanowire for dye-sensitized solar cells" [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA