Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 369, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489113

RESUMO

Protected areas are typically managed as a network of sites exposed to varying anthropogenic conditions. Managing these networks benefits from monitoring of conditions across sites to help prioritize coordinated efforts. Monitoring marine vessel activity and related underwater radiated noise impacts across a network of protected areas, like the U.S. National Marine Sanctuary system, helps managers ensure the quality of habitats used by a wide range of marine species. Here, we use underwater acoustic detections of vessels to quantify different characteristics of vessel noise at 25 locations within eight marine sanctuaries including the Hawaiian Archipelago and the U.S. east and west coasts. Vessel noise metrics, including temporal presence and sound levels, were paired with Automatic Identification System (AIS) vessel tracking data to derive a suite of robust vessel noise indicators for use across the network of marine protected areas. Network-wide comparisons revealed a spectrum of vessel noise conditions that closely matched AIS vessel traffic composition. Shifts in vessel noise were correlated with the decrease in vessel activity early in the COVID-19 pandemic, and vessel speed reduction management initiatives. Improving our understanding of vessel noise conditions in these protected areas can help direct opportunities for reducing vessel noise, such as establishing and maintaining noise-free periods, enhancing port efficiency, engaging with regional and international vessel quieting initiatives, and leveraging co-benefits of management actions for reducing ocean noise.


Assuntos
Pandemias , Navios , Humanos , Monitoramento Ambiental , Ruído , Acústica , Ecossistema
2.
J Acoust Soc Am ; 129(1): 436-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21303023

RESUMO

Deployment of any type of measuring device into the ocean, whether to shallow or deeper depths, is accompanied by the hope that this equipment and associated data will be recovered. The ocean is harsh on gear. Salt water corrodes. Currents, tides, surge, storms, and winds collaborate to increase the severity of the conditions that monitoring devices will endure. All ocean-related research has encountered the situations described in this paper. In collating the details of various deployment and recovery scenarios related to stationary passive acoustic monitoring use in the ocean, it is the intent of this paper to share trouble-shooting successes and failures to guide future work with this gear to monitor marine mammal, fish, and ambient (biologic and anthropogenic) sounds in the ocean-in both coastal and open waters.


Assuntos
Acústica/instrumentação , Monitoramento Ambiental/instrumentação , Água do Mar , Processamento de Sinais Assistido por Computador , Transdutores , Vocalização Animal , Baleias/fisiologia , Animais , Desenho de Equipamento , Falha de Equipamento , Oceanos e Mares , Espectrografia do Som
3.
PLoS One ; 16(8): e0248297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415899

RESUMO

Vessel-based sonar systems that focus on the water column provide valuable information on the distribution of underwater marine organisms, but such data are expensive to collect and limited in their spatiotemporal coverage. Satellite data, however, are widely available across large regions and provide information on surface ocean conditions. If satellite data can be linked to subsurface sonar measurements, it may be possible to predict marine life over broader spatial regions with higher frequency using satellite observations. Here, we use random forest models to evaluate the potential for predicting a sonar-derived proxy for subsurface biomass as a function of satellite imagery in the California Current Ecosystem. We find that satellite data may be useful for prediction under some circumstances, but across a range of sonar frequencies and depths, overall model performance was low. Performance in spatial interpolation tasks exceeded performance in spatial and temporal extrapolation, suggesting that this approach is not yet reliable for forecasting or spatial extrapolation. We conclude with some potential limitations and extensions of this work.


Assuntos
Organismos Aquáticos , Ecossistema , Imagens de Satélites/métodos , Biomassa , California , Oceano Pacífico , Análise Espaço-Temporal
5.
PLoS One ; 11(8): e0160695, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500533

RESUMO

Artificial reefs are commonly used as a management tool, in part to provide ecosystem services, including opportunities for recreational fishing and diving. Quantifying the use of artificial reefs by recreational boaters is essential for determining their value as ecosystem services. In this study, four artificial-natural reef pairs in the eastern Gulf of Mexico (off western Florida) were investigated for boat visitation rates using autonomous acoustic recorders. Digital SpectroGram (DSG) recorders were used to collect sound files from April 2013 to March 2015. An automatic detection algorithm was used to identify boat noise in individual files using the harmonic peaks generated by boat engines, and by comparing the sound amplitude of each file with surrounding files. In all four pairs, visitation rates were significantly higher at the artificial reef than the natural reef. This increase in boat visitation was likely due to actual or perceived increased quality of fishing and diving at the artificial reefs, or to lack of knowledge of the presence or locations of the natural reefs. Inshore reefs (<15 m depth) had high variability in monthly visitation rates, which were generally highest in warmer months. However the seasonal signal was dampened on offshore reefs (>25 m depth). This study appears to be the first to use acoustic data to measure participant use of boating destinations, and highlights the utility of acoustic monitoring for the valuation of this important ecosystem service provided by artificial reefs.


Assuntos
Acústica/instrumentação , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Navios/estatística & dados numéricos , Golfo do México , Dinâmica Populacional
6.
PLoS One ; 9(12): e114893, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551564

RESUMO

This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.


Assuntos
Peixes , Proliferação Nociva de Algas , Som , Animais , Dinoflagellida/crescimento & desenvolvimento , Golfo do México , Oceanografia , Dispositivos Ópticos , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA