Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2315701120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37972069

RESUMO

The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium Synechococcus isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.


Assuntos
Synechococcus , Synechococcus/metabolismo , Ecótipo , Temperatura , Temperatura Baixa , Nucleotídeos/metabolismo , Água do Mar/microbiologia
2.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37874344

RESUMO

Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Redes Reguladoras de Genes , Transcriptoma
3.
Proc Biol Sci ; 291(2019): 20232564, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531400

RESUMO

Phytoplankton are photosynthetic marine microbes that affect food webs, nutrient cycles and climate regulation. Their roles are determined by correlated phytoplankton functional traits including cell size, chlorophyll content and cellular composition. Here, we explore patterns of evolution in interrelated trait values and correlations. Because both chance events and natural selection contribute to phytoplankton trait evolution, we used population bottlenecks to diversify six genotypes of Thalassiosirid diatoms. We then evolved them as large populations in two environments. Interspecific variation and within-species evolution were visualized for nine traits and their correlations using reduced axes (a trait-scape). Our main findings are that shifts in trait values resulted in movement of evolving populations within the trait-scape in both environments, but were more frequent when large populations evolved in a novel environment. Which trait relationships evolved was population-specific, but greater departures from ancestral trait correlations were associated with lower population growth rates. There was no single master trait that could be used to understand multi-trait evolution. Instead, repeatable multi-trait evolution occurred along a major axis of variation defined by several diatom traits and trait relationships. Because trait-scapes capture changes in trait relationships and values together, they offer an insightful way to study multi-trait variation.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Clorofila , Fotossíntese , Cadeia Alimentar
4.
Proc Natl Acad Sci U S A ; 117(11): 5943-5948, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123112

RESUMO

Marine microbes form the base of ocean food webs and drive ocean biogeochemical cycling. Yet little is known about the ability of microbial populations to adapt as they are advected through changing conditions. Here, we investigated the interplay between physical and biological timescales using a model of adaptation and an eddy-resolving ocean circulation climate model. Two criteria were identified that relate the timing and nature of adaptation to the ratio of physical to biological timescales. Genetic adaptation was impeded in highly variable regimes by nongenetic modifications but was promoted in more stable environments. An evolutionary trade-off emerged where greater short-term nongenetic transgenerational effects (low-γ strategy) enabled rapid responses to environmental fluctuations but delayed genetic adaptation, while fewer short-term transgenerational effects (high-γ strategy) allowed faster genetic adaptation but inhibited short-term responses. Our results demonstrate that the selective pressures for organisms within a single water mass vary based on differences in generation timescales resulting in different evolutionary strategies being favored. Organisms that experience more variable environments should favor a low-γ strategy. Furthermore, faster cell division rates should be a key factor in genetic adaptation in a changing ocean. Understanding and quantifying the relationship between evolutionary and physical timescales is critical for robust predictions of future microbial dynamics.


Assuntos
Adaptação Biológica , Evolução Biológica , Oceanos e Mares , Água do Mar/microbiologia , Antecipação Genética , Clima , Simulação por Computador , Meio Ambiente , Variação Genética , Biologia Marinha
5.
J Proteome Res ; 21(1): 77-89, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855411

RESUMO

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.


Assuntos
Cianobactérias , Trichodesmium , Cianobactérias/metabolismo , Biomarcadores Ambientais , Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Trichodesmium/genética , Trichodesmium/metabolismo
6.
Mol Biol Evol ; 38(3): 927-939, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33022053

RESUMO

A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.


Assuntos
Adaptação Biológica , Evolução Biológica , Dióxido de Carbono/fisiologia , Metilação de DNA , Trichodesmium/genética , Epigenoma , Fenótipo , Transcrição Gênica
7.
Proc Biol Sci ; 288(1953): 20210940, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34130504

RESUMO

Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO2. We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.


Assuntos
Evolução Biológica , Dióxido de Carbono , Adaptação Fisiológica , Eucariotos , Fenótipo
8.
Environ Microbiol ; 21(5): 1677-1686, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724442

RESUMO

Synechococcus, a genus of unicellular cyanobacteria found throughout the global surface ocean, is a large driver of Earth's carbon cycle. Developing a better understanding of its diversity and distributions is an ongoing effort in biological oceanography. Here, we introduce 12 new draft genomes of marine Synechococcus isolates spanning five clades and utilize ~100 environmental metagenomes largely sourced from the TARA Oceans project to assess the global distributions of the genomic lineages they and other reference genomes represent. We show that five newly provided clade-II isolates are by far the most representative of the recovered in situ populations (most 'abundant') and have biogeographic distributions distinct from previously available clade-II references. Additionally, these isolates form a subclade possessing the smallest genomes yet identified of the genus (2.14 ± 0.05Mbps; mean ± 1SD) while concurrently hosting some of the highest GC contents (60.67 ± 0.16%). This is in direct opposition to the pattern in Synechococcus's nearest relative, Prochlorococcus - wherein decreasing genome size has coincided with a strong decrease in GC content - suggesting this new subclade of Synechococcus appears to have convergently undergone genomic reduction relative to the rest of the genus, but along a fundamentally different evolutionary trajectory.


Assuntos
Evolução Molecular , Genoma Bacteriano , Água do Mar/microbiologia , Synechococcus/genética , Composição de Bases , Genômica , Metagenoma , Oceanos e Mares , Filogenia , Prochlorococcus/genética , Synechococcus/classificação , Synechococcus/isolamento & purificação , Synechococcus/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(47): E7367-E7374, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27830646

RESUMO

Most investigations of biogeochemically important microbes have focused on plastic (short-term) phenotypic responses in the absence of genetic change, whereas few have investigated adaptive (long-term) responses. However, no studies to date have investigated the molecular progression underlying the transition from plasticity to adaptation under elevated CO2 for a marine nitrogen-fixer. To address this gap, we cultured the globally important cyanobacterium Trichodesmium at both low and high CO2 for 4.5 y, followed by reciprocal transplantation experiments to test for adaptation. Intriguingly, fitness actually increased in all high-CO2 adapted cell lines in the ancestral environment upon reciprocal transplantation. By leveraging coordinated phenotypic and transcriptomic profiles, we identified expression changes and pathway enrichments that rapidly responded to elevated CO2 and were maintained upon adaptation, providing strong evidence for genetic assimilation. These candidate genes and pathways included those involved in photosystems, transcriptional regulation, cell signaling, carbon/nitrogen storage, and energy metabolism. Conversely, significant changes in specific sigma factor expression were only observed upon adaptation. These data reveal genetic assimilation as a potentially adaptive response of Trichodesmium and importantly elucidate underlying metabolic pathways paralleling the fixation of the plastic phenotype upon adaptation, thereby contributing to the few available data demonstrating genetic assimilation in microbial photoautotrophs. These molecular insights are thus critical for identifying pathways under selection as drivers in plasticity and adaptation.


Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Trichodesmium/crescimento & desenvolvimento , Adaptação Fisiológica , Metabolismo Energético , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Fixação de Nitrogênio , Fator sigma/genética , Trichodesmium/genética
10.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180365

RESUMO

Nitrogen-fixing (N2) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N2 fixer Trichodesmium fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO2 adaptation under iron and/or phosphorus (co)limitation. Global shifts in transcripts and proteins under high-CO2/Fe-limited and/or P-limited conditions include decreases in the N2-fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N2 fixation. In a future high-CO2 ocean, this whole-cell energetic reallocation toward organic nitrogen scavenging and away from N2 fixation may reduce new-nitrogen inputs by Trichodesmium while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open-ocean ecosystems.IMPORTANCETrichodesmium is among the most biogeochemically significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open-ocean food webs. We used Trichodesmium cultures adapted to high-CO2 conditions for 7 years, followed by additional exposure to iron and/or phosphorus (co)limitation. We show that "future ocean" conditions of high CO2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation and instead toward upregulation of organic nitrogen-scavenging pathways. We show that the responses of Trichodesmium to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes coupled with major increases in enzymes that oxidize the abundant organic nitrogen source trimethylamine (TMA). Such a shift toward organic nitrogen uptake and away from nitrogen fixation may substantially reduce new-nitrogen inputs by Trichodesmium to the rest of the microbial community in the future high-CO2 ocean, with potential global implications for ocean carbon and nitrogen cycling.


Assuntos
Dióxido de Carbono/metabolismo , Metilaminas/metabolismo , Nitrogênio/metabolismo , Água do Mar/química , Trichodesmium/metabolismo , Adaptação Biológica , Ciclo do Nitrogênio , Fixação de Nitrogênio , Nutrientes/metabolismo , Oceanos e Mares , Água do Mar/microbiologia
11.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054872

RESUMO

Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO2, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia.IMPORTANCETrichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between Trichodesmium and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with Trichodesmium.


Assuntos
Dióxido de Carbono/metabolismo , Consórcios Microbianos/genética , Ciclo do Nitrogênio , Fixação de Nitrogênio , Seleção Genética , Trichodesmium/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Proteoma , Transcriptoma
12.
Environ Microbiol ; 19(11): 4700-4713, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925547

RESUMO

Cytosine methylation has been shown to regulate essential cellular processes and impact biological adaptation. Despite its evolutionary importance, only a handful of bacterial, genome-wide cytosine studies have been conducted, with none for marine bacteria. Here, we examine the genome-wide, C5 -Methyl-cytosine (m5C) methylome and its correlation to global transcription in the marine nitrogen-fixing cyanobacterium Trichodesmium. We characterize genome-wide methylation and highlight conserved motifs across three Trichodesmium isolates and two Trichodesmium metagenomes, thereby identifying highly conserved, novel genomic signatures of potential gene regulation in Trichodesmium. Certain gene bodies with the highest methylation levels correlate with lower expression levels. Several methylated motifs were highly conserved across spatiotemporally separated Trichodesmium isolates, thereby elucidating biogeographically conserved methylation potential. These motifs were also highly conserved in Trichodesmium metagenomic samples from natural populations suggesting them to be potential in situ markers of m5C methylation. Using these data, we highlight predicted roles of cytosine methylation in global cellular metabolism providing evidence for a 'core' m5C methylome spanning different ocean regions. These results provide important insights into the m5C methylation landscape and its biogeochemical implications in an important marine N2 -fixer, as well as advancing evolutionary theory examining methylation influences on adaptation.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , DNA Bacteriano/metabolismo , Trichodesmium/genética , Sequência de Bases/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Genômica , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Análise de Sequência de DNA , Trichodesmium/isolamento & purificação
13.
Chemosphere ; 358: 142195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692368

RESUMO

Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 µg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 µg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.


Assuntos
Organismos Aquáticos , Compostos de Ferro , Compostos de Magnésio , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/metabolismo , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Ferro/química , Bioacumulação , Metais/metabolismo , Silicatos , Invertebrados/efeitos dos fármacos , Invertebrados/metabolismo , Dióxido de Silício/química , Poliquetos/metabolismo , Poliquetos/efeitos dos fármacos , Poliquetos/fisiologia , Bivalves/metabolismo , Bivalves/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-37788887

RESUMO

One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2 Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research.

15.
ISME Commun ; 1(1): 59, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37938606

RESUMO

Trait-based approaches to phytoplankton ecology have gained traction in recent decades as phenotypic traits are incorporated into ecological and biogeochemical models. Here, we use high-throughput phenotyping to explore both intra- and interspecific constraints on trait combinations that are expressed in the cosmopolitan marine diatom genus Thalassiosira. We demonstrate that within Thalassiosira, phenotypic diversity cannot be predicted from genotypic diversity, and moreover, plasticity can create highly divergent phenotypes that are incongruent with taxonomic grouping. Significantly, multivariate phenotypes can be represented in reduced dimensional space using principal component analysis with 77.7% of the variance captured by two orthogonal axes, here termed a 'trait-scape'. Furthermore, this trait-scape can be recovered with a reduced set of traits. Plastic responses to the new environments expanded phenotypic trait values and the trait-scape, however, the overall pattern of response to the new environments was similar between strains and many trait correlations remained constant. These findings demonstrate that trait-scapes can be used to reveal common constraints on multi-trait plasticity in phytoplankton with divergent underlying phenotypes. Understanding how to integrate trait correlational constraints and trade-offs into theoretical frameworks like biogeochemical models will be critical to predict how microbial responses to environmental change will impact elemental cycling now and into the future.

16.
Front Microbiol ; 12: 706235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690950

RESUMO

High-throughput methods for phenotyping microalgae are in demand across a variety of research and commercial purposes. Many microalgae can be readily cultivated in multi-well plates for experimental studies which can reduce overall costs, while measuring traits from low volume samples can reduce handling. Here we develop a high-throughput quantitative phenotypic assay (QPA) that can be used to phenotype microalgae grown in multi-well plates. The QPA integrates 10 low-volume, relatively high-throughput trait measurements (growth rate, cell size, granularity, chlorophyll a, neutral lipid content, silicification, reactive oxygen species accumulation, and photophysiology parameters: ETRmax, Ik, and alpha) into one workflow. We demonstrate the utility of the QPA on Thalassiosira spp., a cosmopolitan marine diatom, phenotyping six strains in a standard nutrient rich environment (f/2 media) using the full 10-trait assay. The multivariate phenotypes of strains can be simplified into two dimensions using principal component analysis, generating a trait-scape. We determine that traits show a consistent pattern when grown in small volume compared to more typical large volumes. The QPA can thus be used for quantifying traits across different growth environments without requiring exhaustive large-scale culturing experiments, which facilitates experiments on trait plasticity. We confirm that this assay can be used to phenotype newly isolated diatom strains within 4 weeks of isolation. The QPA described here is highly amenable to customisation for other traits or unicellular taxa and provides a framework for designing high-throughput experiments. This method will have applications in experimental evolution, modelling, and for commercial applications where screening of phytoplankton traits is of high importance.

18.
Front Microbiol ; 9: 189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487583

RESUMO

Only select prokaryotes can biosynthesize vitamin B12 (i.e., cobalamins), but these organic co-enzymes are required by all microbial life and can be vanishingly scarce across extensive ocean biomes. Although global ocean genome data suggest cyanobacteria to be a major euphotic source of cobalamins, recent studies have highlighted that >95% of cyanobacteria can only produce a cobalamin analog, pseudo-B12, due to the absence of the BluB protein that synthesizes the α ligand 5,6-dimethylbenzimidizole (DMB) required to biosynthesize cobalamins. Pseudo-B12 is substantially less bioavailable to eukaryotic algae, as only certain taxa can intracellularly remodel it to one of the cobalamins. Here we present phylogenetic, metagenomic, transcriptomic, proteomic, and chemical analyses providing multiple lines of evidence that the nitrogen-fixing cyanobacterium Trichodesmium transcribes and translates the biosynthetic, cobalamin-requiring BluB enzyme. Phylogenetic evidence suggests that the Trichodesmium DMB biosynthesis gene, bluB, is of ancient origin, which could have aided in its ecological differentiation from other nitrogen-fixing cyanobacteria. Additionally, orthologue analyses reveal two genes encoding iron-dependent B12 biosynthetic enzymes (cbiX and isiB), suggesting that iron availability may be linked not only to new nitrogen supplies from nitrogen fixation, but also to B12 inputs by Trichodesmium. These analyses suggest that Trichodesmium contains the genus-wide genomic potential for a previously unrecognized role as a source of cobalamins, which may prove to considerably impact marine biogeochemical cycles.

19.
Science ; 357(6356)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912213

RESUMO

Hong et al (Reports, 5 May 2017, p. 527) suggested that previous studies of the biogeochemically significant marine cyanobacterium Trichodesmium showing increased growth and nitrogen fixation at projected future high CO2 levels suffered from ammonia or copper toxicity. They reported that these rates instead decrease at high CO2 when contamination is alleviated. We present and discuss results of multiple published studies refuting this toxicity hypothesis.


Assuntos
Cianobactérias , Trichodesmium , Fixação de Nitrogênio/efeitos dos fármacos , Oceanos e Mares
20.
ISME J ; 11(8): 1813-1824, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28440800

RESUMO

The nitrogen (N)-fixing cyanobacterium Trichodesmium is globally distributed in warm, oligotrophic oceans, where it contributes a substantial proportion of new N and fuels primary production. These photoautotrophs form macroscopic colonies that serve as relatively nutrient-rich substrates that are colonized by many other organisms. The nature of these associations may modulate ocean N and carbon (C) cycling, and can offer insights into marine co-evolutionary mechanisms. Here we integrate multiple omics-based and experimental approaches to investigate Trichodesmium-associated bacterial consortia in both laboratory cultures and natural environmental samples. These efforts have identified the conserved presence of a species of Gammaproteobacteria (Alteromonas macleodii), and enabled the assembly of a near-complete, representative genome. Interorganismal comparative genomics between A. macleodii and Trichodesmium reveal potential interactions that may contribute to the maintenance of this association involving iron and phosphorus acquisition, vitamin B12 exchange, small C compound catabolism, and detoxification of reactive oxygen species. These results identify what may be a keystone organism within Trichodesmium consortia and support the idea that functional selection has a major role in structuring associated microbial communities. These interactions, along with likely many others, may facilitate Trichodesmium's unique open-ocean lifestyle, and could have broad implications for oligotrophic ecosystems and elemental cycling.


Assuntos
Processos Heterotróficos/fisiologia , Trichodesmium/genética , Trichodesmium/fisiologia , Carbono/química , Carbono/metabolismo , Cianobactérias/genética , Ecossistema , Genoma , Genômica , Nitrogênio/química , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Fósforo/química , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA