Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(45): 13753-13762, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36331054

RESUMO

It is very important to build uniform large-area dense hotspots to improve the surface-enhanced Raman scattering (SERS) detection limit. In our research, we designed and prepared a new flexibile SERS substrate with ultradense hot spots that has the advantages of high sensitivity, good repeatability, easy fabrication, and low cost. Due to the special dense hot spot structure, the substrate reaches a SERS enhancement factor of 2.1 × 1011. Because of the excellent physical stability of polydimethylsiloxane, the substrate can be bent at will, and the SERS performance will not change with bending. This is very important to extract effective detection objects on complex surfaces. The substrate has good light transmittance and softness and can be directly attached to the detected agricultural products to realize real-time and rapid SERS monitoring. This structure exhibits extraordinary performance for thiram detection in the ultralow concentration range of 10-13 M.


Assuntos
Nanopartículas Metálicas , Tiram , Prata/química , Dióxido de Silício , Nanopartículas Metálicas/química , Análise Espectral Raman
2.
Artigo em Inglês | MEDLINE | ID: mdl-36305677

RESUMO

Based on etched PS sphere arrays, the different growths of Ag nanoparticles with tunable LSPR are designed when SiO2-25 nm/Ag-30 nm/SiO2-100 nm sandwich nanocavity structures are annealed at 500 °C, including the hexagonal silver nanoparticle rings, circular silver nanoparticle rings, and aggregated silver nanoparticles. The uniformity of particle size and regularity of position generate enhanced electromagnetic field and good surface-enhanced Raman spectroscopy signals as confirmed by UV-vis observation and finite difference time domain method simulation. The developed nanostructures are effectively used as stable, nonreproducible, and markable anti-counterfeiting signs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23021844

RESUMO

In this paper, we design and synthesize a novel diamine ligand of PTO (2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole). The crystal structure, photophysical character and electronic nature of its corresponding Re(I) complex of Re(CO)(3)(PTO)Br have been investigated in detail. Experimental data and theoretical calculation suggest that Re(CO)(3)(PTO)Br owns a long-lived yellow phosphorescence which is sensitive towards molecular oxygen. By doping Re(CO)(3)(PTO)Br into a polymer matrix of polystyrene (PS), the emission response of the resulted composite nanofibers towards molecular oxygen is studied. The optimal sample with mean diameter of 600 nm shows a maximum sensitivity of 4.14 with short response time of 14s (here sensitivity is defined as the ratio of emission intensity in pure N(2) atmosphere to that in pure O(2) atmosphere). The composite nanofibers are also found to be photostable enough to experience UV radiation.


Assuntos
Complexos de Coordenação/química , Medições Luminescentes/métodos , Nanofibras/química , Oxidiazóis/química , Oxigênio/análise , Rênio/química , Cristalografia por Raios X , Diaminas/química , Ligantes , Modelos Moleculares , Poliestirenos/química , Piridinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA