Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Proced Online ; 26(1): 31, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367314

RESUMO

BACKGROUND: Shoulder pain and disability from rotator cuff tears remain challenging clinical problem despite advancements in surgical techniques and materials. To advance our understanding of injury progression and develop effective therapeutics using tissue engineering and regenerative medicine approaches, it is crucial to develop and utilize animal models that closely resemble the anatomy and display the pathophysiology of the human rotator cuff. Among various animal models, the rabbit shoulder defect model is particularly favored due to its similarity to human rotator cuff pathology. However, a standardized protocol for creating a massive rotator cuff defect in the rabbits is not well defined. Therefore, the objective of our study was to establish a robust and reproducible model of a rotator cuff defect to evaluate the regenerative efficacy of scaffolds. RESULTS: In our study, we successfully developed a rabbit model with a massive supraspinatus tendon defect that closely resembles the common rotator cuff injuries observed in humans. This defect involved a complete transection of the tendon, spanning 10 mm in length and encompassing its full thickness and width. To ensure stable scaffolding, we employed an innovative bridging suture technique that utilized a modified Mason-Allen suture as a structural support. Moreover, to assess the therapeutic effectiveness of the model, we utilized different scaffolds, including a bovine tendon extracellular matrix (ECM) scaffold and a commercial acellular dermal matrix (ADM) scaffold. Throughout the observation period, no scaffold damage was observed. Notably, comprehensive histological analysis demonstrated that the regenerative tissue in the tendon ECM scaffold group exhibited an organized and aligned fiber structure, indicating tendon-like tissue regeneration while the tissue in the ADM group showed comparatively less organization. CONCLUSIONS: This study presents a comprehensive description of the implemented procedures for the development of a highly reproducible animal model that induces massive segmental defects in rotator cuff tendons. This protocol can be universally implemented with alternative scaffolds to investigate extensive tendon defects and evaluate the efficacy of regenerative treatments. The application of our animal model offers a standardized and reproducible platform, enabling researchers to systematically evaluate, compare, and optimize scaffold designs. This approach holds significant importance in advancing the development of tissue engineering strategies for effectively repairing extensive tendon defects.

2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894875

RESUMO

Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.


Assuntos
Envelhecimento , Tendões , Adulto , Humanos , Fenômenos Biomecânicos , Tendões/fisiologia , Envelhecimento/patologia , Inflamação/patologia , Dor/patologia , Biologia
3.
Acta Biomater ; 176: 99-115, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142795

RESUMO

Despite the growing clinical use of extracellular matrix (ECM)-based biomaterials for tendon repair, undesired healing outcomes or complications have frequently been reported. A major scientific challenge has been the limited understanding of their functional compositions and mechanisms of action due to the complex nature of tendon ECM. Previously, we have reported a soluble ECM fraction from bovine tendons (tECM) by urea extraction, which exhibited strong, pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, to advance our previous findings and gain insights into the biochemical nature of its pro-tenogenesis activity, tECM was fractionated using (i) an enzymatic digestion approach (pepsin, hyaluronidase, and chondroitinase) to yield various enzyme-digested tECM fractions; and (ii) a gelation-based approach to yield collagen matrix-enriched (CM) and non-collagenous matrix-enriched (NCM) fractions. Their tenogenic bioactivity on hASCs was assessed. Our results collectively indicated that non-collagenous tECM proteins, rather than collagens, are likely the important biochemical factors responsible for tECM pro-tenogenesis bioactivity. Mechanistically, RNA-seq analysis revealed that tECM and its non-collagenous portion induced similar transcriptional profiles of hASCs, particularly genes associated with cell proliferation, collagen synthesis, and tenogenic differentiation, which were distinct from transcriptome induced by its collagenous portion. From an application perspective, the enhanced solubility of the non-collagenous tECM, compared to tECM, should facilitate its combination with various water-soluble biomaterials for tissue engineering protocols. Our work provides insight into the molecular characterization of native tendon ECM, which will help to effectively translate their functional components into the design of well-defined, ECM biomaterials for tendon regeneration. STATEMENT OF SIGNIFICANCE: Significant progress has been made in extracellular matrix (ECM)-based biomaterials for tendon repair. However, their effectiveness remains debated, with conflicting research and clinical findings. Understanding the functional composition and mechanisms of action of ECM is crucial for developing safe and effective bioengineered scaffolds. Expanding on our previous work with bovine tendon ECM extracts (tECM) exhibiting strong pro-tenogenesis activity, we fractionated tECM to evaluate its bioactive moieties. Our findings indicate that the non-collagenous matrix within tECM, rather than the collagenous portions, plays a major role in the pro-tenogenesis bioactivity on human adipose-derived stem cells. These insights will drive further optimization of ECM-based biomaterials, including our advanced method for preparing highly soluble, non-collagenous matrix-enriched tendon ECM for effective tendon repair.


Assuntos
Colágeno , Matriz Extracelular , Animais , Bovinos , Humanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Tendões , Adipócitos , Engenharia Tecidual/métodos , Diferenciação Celular , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química
4.
Acta Biomater ; 176: 277-292, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244656

RESUMO

Repair of functionally graded biological interfaces requires joining dissimilar materials such as hard bone to soft tendon/ligament, with re-injuries/re-tears expected to be minimized by incorporating biomimicking, stress-reducing features within grafts. At bone-tendon interfaces (entheses), stress can be reduced via angled insertion, geometric flaring, mechanical gradation, and interdigitation of tissues. Here, we incorporated enthesis attributes into 3D in silico and physical models of a unique suture anchor-tendon hybrid graft (SATHG) and investigated their effects on stress reduction via finite element analyses (FEA) studies. Over 20 different simulations altering SATHG angulation, flaring, mechanical gradation, and interdigitation identified an optimal design, which included 90° angulation, 25° flaring, and a compliant (ascending then descending) mechanical gradient in SATHG's bone-to-tendon-like transitional region. This design reduced peak stress concentration factor (SCF) by 43.6 % relative to an ascending-only mechanical gradient typically used in hard-to-soft tissue engineering. To verify FEA results, SATHG models were fabricated using a photocrosslinkable bone-tendon-like polyurethane (QHM polymer) for ex vivo tensile assessment. Tensile testing showed that ultimate load (132.9 N), displacement-at-failure (1.78 mm), stiffness (135.4 N/mm), and total work-to-failure (422.1 × 10-3 J) were highest in the optimized design. Furthermore, to assess envisioned usage, SATHG pull-out testing and 6-week in vivo implantation into large, 0.5-cm segmental supraspinatus tendon defects was performed. SATHG pull-out testing showed secure bone attachment while histological assessment such as hematoxylin and eosin (H&E) together with Safranin-O staining showed biocompatibility including enthesis regeneration. This work demonstrates that engineering biomaterials with FEA-optimized, enthesis-like attributes shows potential for enhancing hard-to-soft tissue repair. STATEMENT OF SIGNIFICANCE: Successful repair of hard-to-soft tissue injuries is challenging due to high stress concentrations within bone-tendon/ligament grafts that mechanically compromise repair strength. While stress-reducing gradient biomaterials have been reported, little-to-no attention has focused on other bone-tendon/ligament interface (enthesis) features. To this end, a unique bone-tendon graft (SATHG) was developed by combining two common orthopaedic devices along with biomimetic incorporation of four enthesis-like features to reduce stress and encourage widespread clinician adoption. Notably, utilizing designs based on natural stress dissipation principles such as anchor insertion angle, geometric flaring, and mechanical gradation reduced stress by 43.6 % in silico, which was confirmed ex vivo, while in vivo studies showed SATHG's ability to support native enthesis regeneration. Thus, SATHG shows promise for hard-to-soft tissue repairs.


Assuntos
Lesões do Manguito Rotador , Âncoras de Sutura , Humanos , Tendões/patologia , Manguito Rotador/metabolismo , Osso e Ossos/patologia , Lesões do Manguito Rotador/metabolismo , Materiais Biocompatíveis/metabolismo
5.
Quant Imaging Med Surg ; 14(2): 1406-1416, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415118

RESUMO

Background: The critical shoulder angle (CSA) has been reported to be highly associated with rotator cuff tears (RCTs) and an increased risk of RCT re-tears. However, the measurement of the CSA is greatly affected by the malpositioning of the shoulder. To address this issue, a two-step neural network-based guiding system was developed to obtain reliable CSA radiographs, and its feasibility and accuracy was evaluated. Methods: A total of 1,754 shoulder anteroposterior (AP) radiographs were retrospectively acquired to train and validate a two-step neural network-based guiding system to obtain reliable CSA radiographs. The study included patients aged 18 years or older who underwent X-rays and/or computed tomography (CT) scans of the shoulder. Patients who had undergone shoulder surgery, had a confirmed fracture, or were diagnosed with a musculoskeletal tumor or glenoid defect were excluded from the study. The system consisted of a two-step neural network that in the first step, localized the region of interest of the shoulder, and in the second step, classified the radiography according to type [i.e., 'forward' when the non-overlapping coracoid process is above the glenoid rim, 'backward' when the non-overlapping coracoid process is below or aligned with the glenoid rim, a ratio of the transverse to longitudinal diameter of the glenoid projection (RTL) ≤0.25, or a RTL >0.25]. The performance of the model was assessed in an offline, prospective manner, focusing on the sensitivity and specificity for the forward, backward, RTL ≤0.25, or RTL >0.25 types (denoted as SensF, B, -, + and SpecF, B, -, +, respectively), and Cohen's kappa was also reported. Results: Of 273 cases in the offline prospective test, the SensF, SensB, Sens-, and Sens+ were 88.88% [95% confidence interval (CI): 50.67-99.41%], 94.11% (95% CI: 82.77-98.47%), 96.96% (95% CI: 91.94-99.02%), and 95.06% (95% CI: 87.15-98.40%), respectively. The SpecF, SpecB, Spec-, and Spec+ were 98.48% (95% CI: 95.90-99.51%), 99.55% (95% CI: 97.12-99.97%), 95.04% (95% CI: 89.65-97.81%), and 97.39% (93.69-99.03%), respectively. A high classification rate (93.41%; 95% CI: 89.14-96.24%) and almost perfect agreement (Cohen's kappa: 0.903, 95% CI: 0.86-0.95) were achieved. Conclusions: The guiding system can rapidly and accurately classify the types of AP shoulder radiography, thereby guiding the adjustment of patient positioning. This will facilitate the rapid obtainment of reliable CSA radiography to measure the CSA on proper AP radiographs.

6.
Bioact Mater ; 36: 221-237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481565

RESUMO

A significant clinical challenge in large-to-massive rotator cuff tendon injuries is the need for sustaining high mechanical demands despite limited tissue regeneration, which often results in clinical repair failure with high retear rates and long-term functional deficiencies. To address this, an innovative tendon substitute named "BioTenoForce" is engineered, which uses (i) tendon extracellular matrix (tECM)'s rich biocomplexity for tendon-specific regeneration and (ii) a mechanically robust, slow degradation polyurethane elastomer to mimic native tendon's physical attributes for sustaining long-term shoulder movement. Comprehensive assessments revealed outstanding performance of BioTenoForce, characterized by robust core-shell interfacial bonding, human rotator cuff tendon-like mechanical properties, excellent suture retention, biocompatibility, and tendon differentiation of human adipose-derived stem cells. Importantly, BioTenoForce, when used as an interpositional tendon substitute, demonstrated successful integration with regenerative tissue, exhibiting remarkable efficacy in repairing large-to-massive tendon injuries in two animal models. Noteworthy outcomes include durable repair and sustained functionality with no observed breakage/rupture, accelerated recovery of rat gait performance, and >1 cm rabbit tendon regeneration with native tendon-like biomechanical attributes. The regenerated tissues showed tendon-like, wavy, aligned matrix structure, which starkly contrasts with the typical disorganized scar tissue observed after tendon injury, and was strongly correlated with tissue stiffness. Our simple yet versatile approach offers a dual-pronged, broadly applicable strategy that overcomes the limitations of poor regeneration and stringent biomechanical requirements, particularly essential for substantial defects in tendon and other load-bearing tissues.

7.
Bioact Mater ; 37: 439-458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698918

RESUMO

Facile and rapid 3D fabrication of strong, bioactive materials can address challenges that impede repair of large-to-massive rotator cuff tears including personalized grafts, limited mechanical support, and inadequate tissue regeneration. Herein, we developed a facile and rapid methodology that generates visible light-crosslinkable polythiourethane (PHT) pre-polymer resin (∼30 min at room temperature), yielding 3D-printable scaffolds with tendon-like mechanical attributes capable of delivering tenogenic bioactive factors. Ex vivo characterization confirmed successful fabrication, robust human supraspinatus tendon (SST)-like tensile properties (strength: 23 MPa, modulus: 459 MPa, at least 10,000 physiological loading cycles without failure), excellent suture retention (8.62-fold lower than acellular dermal matrix (ADM)-based clinical graft), slow degradation, and controlled release of fibroblast growth factor-2 (FGF-2) and transforming growth factor-ß3 (TGF-ß3). In vitro studies showed cytocompatibility and growth factor-mediated tenogenic-like differentiation of mesenchymal stem cells. In vivo studies demonstrated biocompatibility (3-week mouse subcutaneous implantation) and ability of growth factor-containing scaffolds to notably regenerate at least 1-cm of tendon with native-like biomechanical attributes as uninjured shoulder (8-week, large-to-massive 1-cm gap rabbit rotator cuff injury). This study demonstrates use of a 3D-printable, strong, and bioactive material to provide mechanical support and pro-regenerative cues for challenging injuries such as large-to-massive rotator cuff tears.

8.
Adv Mater ; : e2313722, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417770

RESUMO

Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA