RESUMO
BACKGROUND: Human cardiac long noncoding RNA (lncRNA) profiles in patients with dilated cardiomyopathy (DCM) were previously analyzed, and the long noncoding RNA CHKB (choline kinase beta) divergent transcript (CHKB-DT) levels were found to be mostly downregulated in the heart. In this study, the function of CHKB-DT in DCM was determined. METHODS: Long noncoding RNA expression levels in the human heart tissues were measured via quantitative reverse transcription-polymerase chain reaction and in situ hybridization assays. A CHKB-DT heterozygous or homozygous knockout mouse model was generated using the clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 system, and the adeno-associated virus with a cardiac-specific promoter was used to deliver the RNA in vivo. Sarcomere shortening was performed to assess the primary cardiomyocyte contractility. The Seahorse XF cell mitochondrial stress test was performed to determine the energy metabolism and ATP production. Furthermore, the underlying mechanisms were explored using quantitative proteomics, ribosome profiling, RNA antisense purification assays, mass spectrometry, RNA pull-down, luciferase assay, RNA-fluorescence in situ hybridization, and Western blotting. RESULTS: CHKB-DT levels were remarkably decreased in patients with DCM and mice with transverse aortic constriction-induced heart failure. Heterozygous knockout of CHKB-DT in cardiomyocytes caused cardiac dilation and dysfunction and reduced the contractility of primary cardiomyocytes. Moreover, CHKB-DT heterozygous knockout impaired mitochondrial function and decreased ATP production as well as cardiac energy metabolism. Mechanistically, ALDH2 (aldehyde dehydrogenase 2) was a direct target of CHKB-DT. CHKB-DT physically interacted with the mRNA of ALDH2 and fused in sarcoma (FUS) through the GGUG motif. CHKB-DT knockdown aggravated ALDH2 mRNA degradation and 4-HNE (4-hydroxy-2-nonenal) production, whereas overexpression of CHKB-DT reversed these molecular changes. Furthermore, restoring ALDH2 expression in CHKB-DT+/- mice alleviated cardiac dilation and dysfunction. CONCLUSIONS: CHKB-DT is significantly downregulated in DCM. CHKB-DT acts as an energy metabolism-associated long noncoding RNA and represents a promising therapeutic target against DCM.
Assuntos
Aldeído-Desidrogenase Mitocondrial , Cardiomiopatia Dilatada , RNA Longo não Codificante , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Regulação para Baixo , Hibridização in Situ Fluorescente , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: Tetraspanin CD151 is highly expressed in endothelia and reinforces cell adhesion, but its role in vascular inflammation remains largely unknown. METHODS: In vitro molecular and cellular biological analyses on genetically modified endothelial cells, in vivo vascular biological analyses on genetically engineered mouse models, and in silico systems biology and bioinformatics analyses on CD151-related events. RESULTS: Endothelial ablation of Cd151 leads to pulmonary and cardiac inflammation, severe sepsis, and perilous COVID-19, and endothelial CD151 becomes downregulated in inflammation. Mechanistically, CD151 restrains endothelial release of proinflammatory molecules for less leukocyte infiltration. At the subcellular level, CD151 determines the integrity of multivesicular bodies/lysosomes and confines the production of exosomes that carry cytokines such as ANGPT2 (angiopoietin-2) and proteases such as cathepsin-D. At the molecular level, CD151 docks VCP (valosin-containing protein)/p97, which controls protein quality via mediating deubiquitination for proteolytic degradation, onto endolysosomes to facilitate VCP/p97 function. At the endolysosome membrane, CD151 links VCP/p97 to (1) IFITM3 (interferon-induced transmembrane protein 3), which regulates multivesicular body functions, to restrain IFITM3-mediated exosomal sorting, and (2) V-ATPase, which dictates endolysosome pH, to support functional assembly of V-ATPase. CONCLUSIONS: Distinct from its canonical function in strengthening cell adhesion at cell surface, CD151 maintains endolysosome function by sustaining VCP/p97-mediated protein unfolding and turnover. By supporting protein quality control and protein degradation, CD151 prevents proteins from (1) buildup in endolysosomes and (2) discharge through exosomes, to limit vascular inflammation. Also, our study conceptualizes that balance between degradation and discharge of proteins in endothelial cells determines vascular information. Thus, the IFITM3/V-ATPase-tetraspanin-VCP/p97 complexes on endolysosome, as a protein quality control and inflammation-inhibitory machinery, could be beneficial for therapeutic intervention against vascular inflammation.
Assuntos
COVID-19 , Endossomos , Lisossomos , Tetraspanina 24 , Animais , Lisossomos/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 24/genética , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/imunologia , COVID-19/patologia , Endossomos/metabolismo , Camundongos Knockout , Vasculite/metabolismo , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Inflamação/metabolismo , Inflamação/patologia , Sepse/metabolismoRESUMO
BACKGROUND: Diabetes is associated with cardiovascular complications. microRNAs translocate into subcellular organelles to modify genes involved in diabetic cardiomyopathy. However, functional properties of subcellular AGO2 (Argonaute2), a core member of miRNA machinery, remain elusive. METHODS: We elucidated the function and mechanism of subcellular localized AGO2 on mouse models for diabetes and diabetic cardiomyopathy. Recombinant adeno-associated virus type 9 was used to deliver AGO2 to mice through the tail vein. Cardiac structure and functions were assessed by echocardiography and catheter manometer system. RESULTS: AGO2 was decreased in mitochondria of diabetic cardiomyocytes. Overexpression of mitochondrial AGO2 attenuated diabetes-induced cardiac dysfunction. AGO2 recruited TUFM, a mitochondria translation elongation factor, to activate translation of electron transport chain subunits and decrease reactive oxygen species. Malonylation, a posttranslational modification of AGO2, reduced the importing of AGO2 into mitochondria in diabetic cardiomyopathy. AGO2 malonylation was regulated by a cytoplasmic-localized short isoform of SIRT3 through a previously unknown demalonylase function. CONCLUSIONS: Our findings reveal that the SIRT3-AGO2-CYTB axis links glucotoxicity to cardiac electron transport chain imbalance, providing new mechanistic insights and the basis to develop mitochondria targeting therapies for diabetic cardiomyopathy.
Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Genes Mitocondriais , Mitocôndrias/genética , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Diabetes Mellitus/metabolismoRESUMO
BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.
Assuntos
Aneurisma da Aorta Abdominal , Ferroptose , Humanos , Camundongos , Animais , Gangliosídeo G(M3)/metabolismo , Proteômica , Músculo Liso Vascular/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/metabolismo , Ferro , Miócitos de Músculo Liso/metabolismo , Modelos Animais de DoençasRESUMO
BACKGROUND: Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS: The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS: We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS: Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.
Assuntos
Processamento Alternativo , Cardiomiopatia Dilatada , Ribonucleoproteínas Nucleares Heterogêneas , Camundongos Knockout , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Longo não Codificante , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/genética , Camundongos TransgênicosRESUMO
Myocarditis is a challenging inflammatory disease of the heart, and better understanding of its pathogenesis is needed to develop specific drug therapies. Epoxyeicosatrienoic acids (EETs), active molecules synthesized by CYP (cytochrome P450) enzymes from arachidonic acids and hydrolyzed to less active dihydroxyeicosatrienoic acids by sEH (soluble epoxide hydrolase), have been attributed anti-inflammatory activity. Here, we investigated whether EETs have immunomodulatory activity and exert protective effects on coxsackie B3 virus-induced myocarditis. Viral infection altered eicosanoid epoxide and diol levels in both patients with myocarditis and in the murine heart and correlated with the increased expression and activity of sEH after coxsackie B3 virus infection. Administration of a sEH inhibitor prevented coxsackie B3 virus-induced cardiac dysfunction and inflammatory infiltration. Importantly, EET/sEH inhibitor treatment attenuated viral infection or improved viral resistance by activating type I IFN (interferon) signaling. At the molecular level, EETs enhanced the interaction between GSK3ß (glycogen synthase kinase-3 beta) and TBK1 (TANK-binding kinase 1) to promote IFN-ß production. Our findings revealed that EETs and sEH inhibitors prevent the progress of coxsackie B3 virus-induced myocarditis, particularly by promoting viral resistance by increasing IFN production.
RESUMO
Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.
Assuntos
Proteínas Argonautas , Modelos Animais de Doenças , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Repressoras , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Miócitos Cardíacos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Remodelação Ventricular , Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Regulação da Expressão Gênica , Masculino , Dependovirus/genética , Transcrição GênicaRESUMO
BACKGROUND: Effectiveness of a non-physician community health-care provider-led intensive blood pressure intervention on cardiovascular disease has not been established. We aimed to test the effectiveness of such an intervention compared with usual care on risk of cardiovascular disease and all-cause death among individuals with hypertension. METHODS: In this open-label, blinded-endpoint, cluster-randomised trial, we recruited individuals aged at least 40 years with an untreated systolic blood pressure of at least 140 mm Hg or a diastolic blood pressure of at least 90 mm Hg (≥130 mm Hg and ≥80 mm Hg for those at high risk for cardiovascular disease or if currently taking antihypertensive medication). We randomly assigned (1:1) 326 villages to a non-physician community health-care provider-led intervention or usual care, stratified by provinces, counties, and townships. In the intervention group, trained non-physician community health-care providers initiated and titrated antihypertensive medications according to a simple stepped-care protocol to achieve a systolic blood pressure goal of less than 130 mm Hg and diastolic blood pressure goal of less than 80 mm Hg with supervision from primary care physicians. They also delivered discounted or free antihypertensive medications and health coaching for patients. The primary effectiveness outcome was a composite outcome of myocardial infarction, stroke, heart failure requiring hospitalisation, and cardiovascular disease death during the 36-month follow-up in the study participants. Safety was assessed every 6 months. This trial is registered with ClinicalTrials.gov, NCT03527719. FINDINGS: Between May 8 and Nov 28, 2018, we enrolled 163 villages per group with 33 995 participants. Over 36 months, the net group difference in systolic blood pressure reduction was -23·1 mm Hg (95% CI -24·4 to -21·9; p<0·0001) and in diastolic blood pressure reduction, it was -9·9 mm Hg (-10·6 to -9·3; p<0·0001). Fewer patients in the intervention group than the usual care group had a primary outcome (1·62% vs 2·40% per year; hazard ratio [HR] 0·67, 95% CI 0·61-0·73; p<0·0001). Secondary outcomes were also reduced in the intervention group: myocardial infarction (HR 0·77, 95% CI 0·60-0·98; p=0·037), stroke (0·66, 0·60-0·73; p<0·0001), heart failure (0·58, 0·42-0·81; p=0·0016), cardiovascular disease death (0·70, 0·58-0·83; p<0·0001), and all-cause death (0·85, 0·76-0·95; p=0·0037). The risk reduction of the primary outcome was consistent across subgroups of age, sex, education, antihypertensive medication use, and baseline cardiovascular disease risk. Hypotension was higher in the intervention than in the usual care group (1·75% vs 0·89%; p<0·0001). INTERPRETATION: The non-physician community health-care provider-led intensive blood pressure intervention is effective in reducing cardiovascular disease and death. FUNDING: The Ministry of Science and Technology of China and the Science and Technology Program of Liaoning Province, China.
Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Hipertensão , Hipotensão , Infarto do Miocárdio , Acidente Vascular Cerebral , Humanos , Doenças Cardiovasculares/complicações , Pressão Sanguínea , Anti-Hipertensivos/uso terapêutico , Saúde Pública , Hipertensão/tratamento farmacológico , Hipertensão/complicações , Hipotensão/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológicoRESUMO
A critical challenge in genetic diagnostics is the assessment of genetic variants associated with diseases, specifically variants that fall out with canonical splice sites, by altering alternative splicing. Several computational methods have been developed to prioritize variants effect on splicing; however, performance evaluation of these methods is hampered by the lack of large-scale benchmark datasets. In this study, we employed a splicing-region-specific strategy to evaluate the performance of prediction methods based on eight independent datasets. Under most conditions, we found that dbscSNV-ADA performed better in the exonic region, S-CAP performed better in the core donor and acceptor regions, S-CAP and SpliceAI performed better in the extended acceptor region and MMSplice performed better in identifying variants that caused exon skipping. However, it should be noted that the performances of prediction methods varied widely under different datasets and splicing regions, and none of these methods showed the best overall performance with all datasets. To address this, we developed a new method, machine learning-based classification of splice sites variants (MLCsplice), to predict variants effect on splicing based on individual methods. We demonstrated that MLCsplice achieved stable and superior prediction performance compared with any individual method. To facilitate the identification of the splicing effect of variants, we provided precomputed MLCsplice scores for all possible splice sites variants across human protein-coding genes (http://39.105.51.3:8090/MLCsplice/). We believe that the performance of different individual methods under eight benchmark datasets will provide tentative guidance for appropriate method selection to prioritize candidate splice-disrupting variants, thereby increasing the genetic diagnostic yield.
Assuntos
Processamento Alternativo , Splicing de RNA , Biologia Computacional/métodos , Éxons , Humanos , Aprendizado de Máquina , MutaçãoRESUMO
Numerous studies have revealed a close correlation between the levels of apolipoproteins (Apos) (including lipoprotein(a) [Lp(a)]) and an increased risk of cardiovascular disease in recent decades. However, clinically, lipid profiling remains limited to the conventional plasma levels of cholesterol, triglyceride, ApoA1, and ApoB, which brings the necessity to quantify more apolipoproteins in human plasma. In this study, we simultaneously quantified 13 apolipoproteins and Lp(a) in 5 µL of human plasma using the LC-MS/MS platform. A method was developed for the precise detection of Lp(a), ApoA1, A2, A5, B, C1, C2, C3, D, E, H, L1, M, and J. Suitable peptides were selected and optimized to achieve clear separation of each peak. Method validation consisting of linearity, sensitivity, accuracy and precision, recovery, and matrix effects was evaluated. The intra-day CV ranged from 0.58% to 14.2% and the inter-day CV ranged from 0.51% to 13.3%. The recovery rates ranged from 89.8% to 113.7%, while matrix effects ranged from 85.4% to 113.9% for all apolipoproteins and Lp(a). Stability tests demonstrated that these apolipoproteins remained stable for 3 days at 4 °C and 7 days at -20 °C. This validated method was successfully applied to human plasma samples obtained from 45 volunteers. The quantitative results of ApoA1, ApoB, and Lp(a) exhibited a close correlation with the results from the immunity transmission turbidity assay. Collectively, we developed a robust assay that can be used for high-throughput quantification of apolipoproteins and Lp(a) simultaneously for investigating related risk factors in patients with dyslipidemia.
Assuntos
Apolipoproteínas , Lipoproteína(a) , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Apolipoproteínas/sangue , Lipoproteína(a)/sangue , Cromatografia Líquida/métodos , Análise Química do Sangue/métodos , Espectrometria de Massa com Cromatografia LíquidaRESUMO
AIMS: A few studies have reported the effect and safety of pulsed field ablation (PFA) catheters for ablating atrial fibrillation (AF), which were mainly based on basket-shaped or flower-shaped designs. However, the clinical application of a circular-shaped multi-electrode catheter with magnetic sensors is very limited. To study the efficacy and safety of a PFA system in patients with paroxysmal AF using a circular-shaped multi-electrode catheter equipped with magnetic sensors for pulmonary vein isolation (PVI). METHODS AND RESULTS: A novel proprietary bipolar PFA system was used for PVI, which utilized a circular-shaped multi-electrode catheter with magnetic sensors and allowed for three-dimensional model reconstruction, mapping, and ablation in one map. To evaluate the efficacy, efficiency, and safety of this PFA system, a prospective, multi-centre, single-armed, pre-market clinical study was performed. From July 2021 to December 2022, 151 patients with paroxysmal AF were included and underwent PVI. The study examined procedure time, immediate success rate, procedural success rate at 12 months, and relevant complications. In all 151 patients, all the pulmonary veins were acutely isolated using the studied system. Pulsed field ablation delivery was 78.4 ± 41.8 times and 31.3 ± 16.7â ms per patient. Skin-to-skin procedure time was 74.2 ± 29.8â min, and fluoroscopy time was 13.1 ± 7.6â min. The initial 11 (7.2%) cases underwent procedures with deep sedation anaesthesia, and the following cases underwent local anaesthesia. In the initial 11 cases, 4 cases (36.4%) presented transient vagal responses, and the rest were all successfully preventatively treated with atropine injection and rapid fluid infusion. No severe complications were found during or after the procedure. During follow-up, 3 cases experienced atrial flutter, and 11 cases had AF recurrence. The estimated 12-month Kaplan-Meier of freedom from arrhythmia was 88.4%. CONCLUSION: The PFA system, comprised of a circular PFA catheter with magnetic sensors, could rapidly achieve PVI under three-dimensional guidance and demonstrated excellent safety with comparable effects.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Veias Pulmonares/cirurgia , Resultado do Tratamento , Estudos Prospectivos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fenômenos Magnéticos , RecidivaRESUMO
BACKGROUND: Chronic pain is a common, complex, and challenging condition, for which specialised healthcare is required. We investigated the relationship between multisite chronic pain (MCP) and different disease traits identify safe biomarker interventions that can prevent MCP. METHODS: Univariable and multivariable Mendelian randomisation (MR) analysis were conducted to investigate associations between MCP and 36 common diseases in the UK Biobank. Subsequently, we estimated the potential effect of expression of 4774 proteins on MCP utilising existing plasma protein quantitative trait locus data. For the significant biomarkers, we performed phenome-wide MR (Phe-MR) with 1658 outcomes to predict potential safety profiles linked to biomarker intervention. RESULTS: Multisite chronic pain had a substantial impact on psychiatric and neurodevelopmental traits (major depression and attention deficit hyperactivity disorder), cardiovascular diseases (myocardial infarction, coronary artery disease, and heart failure), respiratory outcomes (asthma, chronic obstructive pulmonary disease, and sleep apnoea), arthropathies, type 2 diabetes mellitus, and cholelithiasis. Higher genetically predicted levels of S100A6, DOCK9, ferritin, and ferritin light chain were associated with a risk of MCP, whereas PTN9 and NEUG were linked to decreased MCP risk. Phe-MR results suggested that genetic inhibition of DOCK9 increased the risk of 21 types of disease, whereas the other biomarker interventions were relatively safe. CONCLUSIONS: We established that MCP has an effect on health conditions covering various physiological systems and identified six novel biomarkers for intervention. In particular, S100A6, PTN9, NEUG, and ferritin light chain represent promising targets for MCP prevention, as no significant side-effects were predicted in our study.
Assuntos
Dor Crônica , Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Humanos , Apoferritinas/genética , Bancos de Espécimes Biológicos , Biomarcadores , Dor Crônica/genética , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Biobanco do Reino Unido , Análise da Randomização MendelianaRESUMO
BACKGROUND: Epoxyeicosatrienoic acids (EETs), which exert multiple endogenous protective effects, are hydrolyzed into less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). However, commercial drugs related to EETs or sEH are not yet in clinical use. METHODS: Firstly, the plasma concentration of EETs and DHETs of 316 patients with heart failure (HF) were detected and quantitated by liquid chromatography-tandem mass spectrometry. Then, transverse aortic constriction (TAC)-induced HF was introduced in cardiomyocyte-specific Ephx2-/- mice. Moreover, Western blot, real-time PCR, luciferase reporter, ChIP assays were employed to explore the underlying mechanism. Finally, multiple sEH inhibitors were designed, synthesized, and validated in vitro and in vivo. RESULTS: The ratios of DHETs/EETs were increased in the plasma from patients with HF. Meanwhile, the expression of sEH was upregulated in the heart of patients and mice with HF, especially in cardiomyocytes. Cardiomyocyte-specific Ephx2-/- mice ameliorated cardiac dysfunction induced by TAC. Consistently, Ephx2 knockdown protected Angiotensin II (AngII)-treated cardiomyocytes via increasing EETs in vitro. Mechanistically, AngII could enhance the expression of transcript factor Krüppel-like factor 15 (KLF15), which in turn upregulated sEH. Importantly, glimepiride was identified as a novel sEH inhibitor, which benefited from the elevated EETs during HF. CONCLUSIONS: Glimepiride attenuates HF in mice in part by increasing EETs. CLINICAL TRIAL IDENTIFIER: NCT03461107 (https://clinicaltrials.gov).
Assuntos
Epóxido Hidrolases , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Eicosanoides/metabolismo , CoraçãoRESUMO
Variants in myosin-binding protein C3 (MYBPC3) gene are a main cause of hypertrophic cardiomyopathy (HCM), accounting for 30% to 40% of the total number of HCM mutations. Gene editing represents a potential permanent cure for HCM. The aim of this study was to investigate whether genome editing of MYBPC3 using the CRISPR/Cas9 system in vivo could rescue the phenotype of rats with HCM. We generated a rat model of HCM ("1098hom") that carried an Mybpc3 premature termination codon mutation (p.W1098x) discovered in a human HCM pedigree. On postnatal day 3, the CRISPR/Cas9 system was introduced into rat pups by a single dose of AAV9 particles to correct the variant using homology-directed repair (HDR). Analysis was performed 6 months after AAV9 injection. The 1098hom rats didn't express MYBPC3 protein and developed an HCM phenotype with increased ventricular wall thickness and diminished cardiac function. Importantly, CRISPR HDR genome editing corrected 3.56% of total mutations, restored MYBPC3 protein expression by 2.12%, and normalized the HCM phenotype of 1098hom rats. Our work demonstrates that the HDR strategy is a promising approach for treating HCM associated with MYBPC3 mutation, and that CRISPR technology has great potential for treating hereditary heart diseases.
Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Humanos , Animais , Ratos , Proteínas de Transporte/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Mutação , Fenótipo , LinhagemRESUMO
BACKGROUND: The prevalence of uncontrolled hypertension is high and increasing in low-income and middle-income countries. We tested the effectiveness of a multifaceted intervention for blood pressure control in rural China led by village doctors (community health workers on the front line of primary health care). METHODS: In this open, cluster randomised trial (China Rural Hypertension Control Project), 326 villages that had a regular village doctor and participated in the China New Rural Cooperative Medical Scheme were randomly assigned (1:1) to either village doctor-led multifaceted intervention or enhanced usual care (control), with stratification by provinces, counties, and townships. We recruited individuals aged 40 years or older with an untreated blood pressure of 140/90 mm Hg or higher (≥130/80 mm Hg among those with a history of cardiovascular disease, diabetes, or chronic kidney disease) or a treated blood pressure of 130/80 mm Hg or higher. In the intervention group, trained village doctors initiated and titrated antihypertensive medications according to a standard protocol with supervision from primary care physicians. Village doctors also conducted health coaching on home blood pressure monitoring, lifestyle changes, and medication adherence. The primary outcome (reported here) was the proportion of patients with a blood pressure of less than 130/80 mm Hg at 18 months. The analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, NCT03527719, and is ongoing. FINDINGS: Between May 8 and November 28, 2018, we enrolled 33 995 individuals from 163 intervention and 163 control villages. At 18 months, 8865 (57·0%) of 15 414 patients in the intervention group and 2895 (19·9%) of 14 500 patients in the control group had a blood pressure of less than 130/80 mm Hg, with a group difference of 37·0% (95% CI 34·9 to 39·1%; p<0·0001). Mean systolic blood pressure decreased by -26·3 mm Hg (95% CI -27·1 to -25·4) from baseline to 18 months in the intervention group and by -11·8 mm Hg (-12·6 to -11·0) in the control group, with a group difference of -14·5 mm Hg (95% CI -15·7 to -13·3 mm Hg; p<0·0001). Mean diastolic blood pressure decreased by -14·6 mm Hg (-15·1 to -14·2) from baseline to 18 months in the intervention group and by -7·5 mm Hg (-7·9 to -7·2) in the control group, with a group difference of -7·1 mm Hg (-7·7 to -6·5 mm Hg; p<0·0001). No treatment-related serious adverse events were reported in either group. INTERPRETATION: Compared with enhanced usual care, village doctor-led intervention resulted in statistically significant improvements in blood pressure control among rural residents in China. This feasible, effective, and sustainable implementation strategy could be scaled up in rural China and other low-income and middle-income countries for hypertension control. FUNDING: Ministry of Science and Technology of China.
Assuntos
Hipertensão , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial , China/epidemiologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/prevenção & controleRESUMO
BACKGROUND: Phenylacetylglutamine (PAGln)-a newly discovered microbial metabolite produced by phenylalanine metabolism-is reportedly associated with cardiovascular events via adrenergic receptors. Nonetheless, its association with cardiovascular outcomes in heart failure (HF) patients remains unknown. OBJECTIVES: This study aimed to prospectively investigate the prognostic value of PAGln for HF. METHODS: Plasma PAGln levels were quantified by liquid chromatography-tandem mass spectrometry. We first assessed the association between plasma PAGln levels and the incidence of adverse cardiovascular events in 3152 HF patients (including HF with preserved and reduced ejection fraction) over a median follow-up period of 2 years. The primary endpoint was the composite of cardiovascular death or heart transplantation. We then assessed the prognostic role of PAGln in addition to the classic biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP). The correlation between PAGln levels and ß-blocker use was also investigated. RESULTS: In total, 520 cardiovascular deaths or heart transplantations occurred in the HF cohort. Elevated PAGln levels were independently associated with a higher risk of the primary endpoint in a dose-response manner, regardless of HF subtype. Concurrent assessment of PAGln and NT-proBNP levels enhanced risk stratification among HF patients. PAGln further showed prognostic value at low NT-proBNP levels. Additionally, the interaction effects between PAGln and ß-blocker use were not significant. CONCLUSIONS: Plasma PAGln levels are an independent predictor of an increased risk of adverse cardiovascular events in HF. Our work could provide joint and complementary prognostic value to NT-proBNP levels in HF patients.
Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico/fisiologia , Biomarcadores , Prognóstico , Fragmentos de Peptídeos , Peptídeo Natriurético EncefálicoRESUMO
The prevalence of obesity and atrial fibrillation (AF), which are inextricably linked, is rapidly increasing worldwide. Obesity rates are higher among patients with AF than healthy individuals. Some epidemiological data indicated that obese patients were more likely to develop AF, but others reported no significant correlation. Obesity-related hypertension, diabetes, and obstructive sleep apnea are all associated with AF. Additionally, increased epicardial fat, systemic inflammation, and oxidative stress caused by obesity can induce atrial enlargement, inflammatory activation, local myocardial fibrosis, and electrical conduction abnormalities, all of which led to AF and promoted its persistence. Weight loss reduced the risk and reversed natural progression of AF, which may be due to its anti-fibrosis and inflammation effect. However, fluctuations in weight offset the benefits of weight loss. Therefore, the importance of steady weight loss urges clinicians to incorporate weight management interventions in the treatment of patients with AF. In this review, we discuss the epidemiology of obesity and AF, summarize the mechanisms by which obesity triggers AF, and explain how weight loss improves the prognosis of AF.
Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Relevância Clínica , Tecido Adiposo , Inflamação , Obesidade/diagnóstico , Obesidade/epidemiologiaRESUMO
Tumor necrosis factor-alpha (TNF-α) plays an important pathogenic role in cardiac hypertrophy and heart failure (HF); however, anti-TNF is paradoxically negative in clinical trials and even worsens HF, indicating a possible protective role of TNF-α in HF. TNF-α exists in transmembrane (tmTNF-α) and soluble (sTNF-α) forms. Herein, we found that TNF receptor 1 (TNFR1) knockout (KO) or knockdown (KD) by short hairpin RNA or small interfering RNA (siRNA) significantly alleviated cardiac hypertrophy, heart dysfunction, fibrosis, and inflammation with increased tmTNF-α expression, whereas TNFR2 KO or KD exacerbated the pathological phenomena with increased sTNF-α secretion in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro, respectively, indicating the beneficial effects of TNFR2 associated with tmTNF-α. Suppressing TNF-α converting enzyme by TNF-α Protease Inhibitor-1 (TAPI-1) to increase endogenous tmTNF-α expression significantly alleviated TAC-induced cardiac hypertrophy. Importantly, direct addition of exogenous tmTNF-α into cardiomyocytes in vitro significantly reduced ISO-induced cardiac hypertrophy and transcription of the pro-inflammatory cytokines and induced proliferation. The beneficial effects of tmTNF-α were completely blocked by TNFR2 KD in H9C2 cells and TNFR2 KO in primary myocardial cells. Furthermore, we demonstrated that tmTNF-α displayed antihypertrophic and anti-inflammatory effects by activating the AKT pathway and inhibiting the nuclear factor (NF)-κB pathway via TNFR2. Our data suggest that tmTNF-α exerts cardioprotective effects via TNFR2. Specific targeting of tmTNF-α processing, rather than anti-TNF therapy, may be more useful for the treatment of hypertrophy and HF.
Assuntos
Cardiomegalia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologiaRESUMO
[Figure: see text].
Assuntos
Leucotrieno B4/metabolismo , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/metabolismo , Quimiocina CXCL2/metabolismo , Feminino , Lipoxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores do Leucotrieno B4/antagonistas & inibidores , Receptores do Leucotrieno B4/metabolismo , Serina-Treonina Quinase 3/genéticaRESUMO
[Figure: see text].