Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Appl Microbiol Biotechnol ; 105(7): 2747-2758, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33686455

RESUMO

The E3 ubiquitin ligase Ubr1 is a core player in yeast ubiquitylation and protein quality control required for cellular events including proteasomal degradation and gene activity but has been rarely explored in filamentous fungi. We show here an essentiality of orthologous Ubr1-mediated ubiquitylation for the activation of central developmental pathway (CPD) and the CPD-controlled cellular events in Beauveria bassiana, a filamentous fungal insect pathogen that undergoes an asexual cycle in vitro or in vivo. As a result of ubr1 disruption, intracellular free ubiquitin accumulation increased by 1.4-fold, indicating an impaired ability for the disruptant to transfer ubiquitin to target proteins. Consequently, the disruptant was compromised in polar growth featured with curved or hook-like germ tubes and abnormally branched hyphae, leading to impeded propagation of aberrant hyphal bodies in infected insect hemocoel and attenuated virulence. In the mutant, sharply repressed expression of three CDP activator genes (brlA, abaA, and wetA) correlated well with severe defects in aerial conidiation and submerged blastospore (hyphal body) production in insect hemolymph or a mimicking medium. Moreover, the disruptant was sensitive to cell wall perturbation or lysing and showed increased catalase activity and resistance to hydrogen peroxide despite null response to high osmolarity or heat shock. Most of the examined genes involved in polar growth and cell wall integrity were down-regulated in the disruptant. These findings uncover that the Ubr1-mediated ubiquitylation orchestrates polar growth and the CDP-regulated asexual cycle in vitro and in vivo in B. bassiana. KEY POINTS: • Ubr1 is an E3 ubiquitin ligase essential for ubiquitylation in Beauveria bassiana. • Ubr1-mediated ubiquitylation is required for activation of central development pathway. • Ubr1 orchestrates polar growth and asexual cycle in vitro and in vivo.


Assuntos
Beauveria , Animais , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico , Ubiquitinação , Virulência
2.
Environ Microbiol ; 22(7): 2564-2580, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32056334

RESUMO

Ubi4 is a polyubiquitin precursor well characterized in yeasts but unexplored in insect mycopathogens. Here, we report that orthologous Ubi4 plays a core role in ubiquitin- and asexual lifestyle-required cellular events in Beauveria bassiana. Deletion of ubi4 led to abolished ubiquitin accumulation, blocked autophagic process, severe defects in conidiation and conidial quality, reduced cell tolerance to oxidative, osmotic, cell wall perturbing and heat-shock stresses, decreased transcript levels of development-activating and antioxidant genes, but light effect on radial growth under normal conditions. The deletion mutant lost insect pathogenicity via normal cuticle infection and was severely compromised in virulence via cuticle-bypassing infection due to a block of dimorphic transition critical for acceleration of host mummification. Proteomic and ubiquitylomic analyses revealed 1081 proteins differentially expressed and 639 lysine residues significantly hyper- or hypo-ubiquitylated in the deletion mutant, including dozens of ubiquitin-activating, conjugating and ligating enzymes, core histones, and many more involved in proteasomes, autophagy-lysosome process and protein degradation. Singular deletions of seven ubiquitin-conjugating enzyme genes exerted differential Ubi4-like effects on conidiation level and conidial traits. These findings uncover an essential role of Ubi4 in ubiquitin transfer cascade and its pleiotropic effects on the in vitro and in vivo asexual cycle of B. bassiana.


Assuntos
Beauveria/metabolismo , Beauveria/patogenicidade , Insetos/microbiologia , Ubiquitina C/genética , Ubiquitina C/metabolismo , Animais , Beauveria/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Histonas/metabolismo , Controle de Pragas/métodos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Proteômica , Esporos Fúngicos/metabolismo , Estresse Fisiológico/genética , Virulência/genética
3.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32245759

RESUMO

RAD23 can repair yeast DNA lesions through nucleotide excision repair (NER), a mechanism that is dependent on proteasome activity and ubiquitin chains but different from photolyase-depending photorepair of UV-induced DNA damages. However, this accessory NER protein remains functionally unknown in filamentous fungi. In this study, orthologous RAD23 in Beauveria bassiana, an insect-pathogenic fungus that is a main source of fungal insecticides, was found to interact with the photolyase PHR2, enabling repair of DNA lesions by degradation of UVB-induced cytotoxic (6-4)-pyrimidine-pyrimidine photoproducts under visible light, and it hence plays an essential role in the photoreactivation of UVB-inactivated conidia but no role in reactivation of such conidia through NER in dark conditions. Fluorescence-labeled RAD23 was shown to normally localize in the cytoplasm, to migrate to vacuoles in the absence of carbon, nitrogen, or both, and to enter nuclei under various stresses, which include UVB, a harmful wavelength of sunlight. Deletion of the rad23 gene resulted in an 84% decrease in conidial UVB resistance, a 95% reduction in photoreactivation rate of UVB-inactivated conidia, and a drastic repression of phr2 A yeast two-hybrid assay revealed a positive RAD23-PHR2 interaction. Overexpression of phr2 in the Δrad23 mutant largely mitigated the severe defect of the Δrad23 mutant in photoreactivation. Also, the deletion mutant was severely compromised in radial growth, conidiation, conidial quality, virulence, multiple stress tolerance, and transcriptional expression of many phenotype-related genes. These findings unveil not only the pleiotropic effects of RAD23 in B. bassiana but also a novel RAD23-PHR2 interaction that is essential for the photoprotection of filamentous fungal cells from UVB damage.IMPORTANCE RAD23 is able to repair yeast DNA lesions through nucleotide excision in full darkness, a mechanism distinct from photolyase-dependent photorepair of UV-induced DNA damage but functionally unknown in filamentous fungi. Our study unveils that the RAD23 ortholog in a filamentous fungal insect pathogen varies in subcellular localization according to external cues, interacts with a photolyase required for photorepair of cytotoxic (6-4)-pyrimidine-pyrimidine photoproducts in UV-induced DNA lesions, and plays an essential role in conidial UVB resistance and reactivation of UVB-inactivated conidia under visible light rather than in the dark, as required for nucleotide excision repair. Loss-of-function mutations of RAD23 exert pleiotropic effects on radial growth, aerial conidiation, multiple stress responses, virulence, virulence-related cellular events, and phenotype-related gene expression. These findings highlight a novel mechanism underlying the photoreactivation of UVB-impaired fungal cells by RAD23 interacting with the photolyase, as well as its essentiality for filamentous fungal life.


Assuntos
Beauveria/fisiologia , Desoxirribodipirimidina Fotoliase/genética , Proteínas Fúngicas/genética , Pleiotropia Genética , Interações Hospedeiro-Patógeno , Animais , Beauveria/enzimologia , Beauveria/genética , Reparo do DNA , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas Fúngicas/metabolismo , Mariposas/microbiologia , Esporos Fúngicos
4.
Cell Microbiol ; 21(12): e13100, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418513

RESUMO

Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+ , Zn2+ , Fe2+ , and Mg2+ ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana.


Assuntos
Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Domínios Proteicos/fisiologia , Estresse Fisiológico/fisiologia , Animais , Membrana Celular/metabolismo , Parede Celular/metabolismo , Sinais (Psicologia) , Deleção de Genes , Insetos/microbiologia , Lepidópteros/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Vacúolos/metabolismo , Vacúolos/microbiologia , Virulência/fisiologia
5.
Fungal Genet Biol ; 127: 1-11, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30807832

RESUMO

VeA is a key velvet protein that regulates sexual/asexual development and secondary metabolism in filamentous fungi, particularly Aspergilli, but has not been explored yet in asexual insect mycopathogens, such as Beauveria bassiana. Here, we report a localization of B. bassiana VeA in the cytoplasm of hyphal cells exposed to either light or dark cue and its migration to the nucleus only in darkness. Deletion of veA resulted in facilitated hyphal growth and decreased cell length on rich media, light growth defects on scant media, and increased sensitivities to oxidation, high osmolarity and prolonged heat shock during colony growth. Compared to wild-type, the deletion mutant was much more triggered in conidiation at optimal 25 °C in darkness than in a light/dark (L:D) cycle of 12:12, indicating the role of VeA acting as a negative regulator of conidiation in a light-dependent manner. The mutant conidia produced at L:D 12:12 showed defects in germination, thermotolerance and UVB resistance but no change in virulence, contrasting to attenuated virulence for the mutant conidia produced in darkness. Intriguingly, fungal outgrowth and conidiation were markedly suppressed on the surfaces of the mutant-mummified insect cadavers, suggesting a significant role of VeA in fungal survival, dispersal and prevalence in host habitats. Transcriptomic analysis revealed 1248 and 1183 differentially expressed genes in the deletion mutant versus wild-type grown at L:D 0:24 and 12:12 respectively, including those involved in central developmental pathway and secondary metabolism. Altogether, VeA is functionally involved in asexual cycle, stress tolerance and transcriptional regulation of B. bassiana.


Assuntos
Beauveria/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Reprodução Assexuada , Estresse Fisiológico , Transcrição Gênica , Animais , Beauveria/crescimento & desenvolvimento , Deleção de Genes , Genoma Fúngico , Hifas/crescimento & desenvolvimento , Larva/microbiologia , Mariposas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
6.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552186

RESUMO

Fungal conidia serve as active ingredients of fungal insecticides but are sensitive to solar UV irradiation, which impairs double-stranded DNA (dsDNA) by inducing the production of cytotoxic cyclobutane pyrimidine dimers (CPDs) and (6-4)-pyrimidine-pyrimidine photoproducts (6-4PPs). This study aims to elucidate how CPD photolyase (Phr1) and 6-4PP photolyase (Phr2) repair DNA damage and photoreactivate UVB-inactivated cells in Beauveria bassiana, a main source of fungal insecticides. Both Phr1 and Phr2 are proven to exclusively localize in the fungal nuclei. Despite little influence on growth, conidiation, and virulence, singular deletions of phr1 and phr2 resulted in respective reductions of 38% and 19% in conidial tolerance to UVB irradiation, a sunlight component most harmful to formulated conidia. CPDs and 6-4PPs accumulated significantly more in the cells of Δphr1 and Δphr2 mutants than in those of a wild-type strain under lethal UVB irradiation and were largely or completely repaired by Phr1 in the Δphr2 mutant and Phr2 in the Δphr1 mutant after optimal 5-h exposure to visible light. Consequently, UVB-inactivated conidia of the Δphr1 and Δphr2 mutants were much less efficiently photoreactivated than were the wild-type counterparts. In contrast, overexpression of either phr1 or phr2 in the wild-type strain resulted in marked increases in both conidial UVB resistance and photoreactivation efficiency. These findings indicate essential roles of Phr1 and Phr2 in photoprotection of B. bassiana from UVB damage and unveil exploitable values of both photolyase genes for improved UVB resistance and application strategy of fungal insecticides.IMPORTANCE Protecting fungal cells from damage from solar UVB irradiation is critical for development and application of fungal insecticides but is mechanistically not understood in Beauveria bassiana, a classic insect pathogen. We unveil that two intranuclear photolyases, Phr1 and Phr2, play essential roles in repairing UVB-induced dsDNA lesions through respective decomposition of cytotoxic cyclobutane pyrimidine dimers and (6-4)-pyrimidine-pyrimidine photoproducts, hence reactivating UVB-inactivated cells effectively under visible light. Our findings shed light on the high potential of both photolyase genes for use in improving UVB resistance and application strategy of fungal insecticides.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/efeitos da radiação , Desoxirribodipirimidina Fotoliase/genética , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Núcleo Celular , Reparo do DNA , Regulação Fúngica da Expressão Gênica , Insetos/microbiologia , Luz , Dímeros de Pirimidina , Tolerância a Radiação , Esporos Fúngicos/genética
7.
Fungal Genet Biol ; 93: 1-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27241960

RESUMO

Miro homologues are small mitochondrial Rho GTPases belonging to the Ras superfamily across organisms and are generally unexplored in filamentous fungi. Here we identified a Miro orthologue (bMiro) in Beauveria bassiana, a filamentous fungal insect pathogen as a classic biological control agent of insect pests. This orthologue was proven to anchor on mitochondrial outer membrane in a manner depending completely upon a short C-terminal transmembrane domain. As a result of bmiro deletion, mitochondria in hyphal cells were largely aggregated, and their mass and mobility were reduced, accompanied with a remarkable decrease in ATP content but little change in mitochondrial morphology. The deletion mutant became 42%, 37%, 19% and 10% more tolerant to Ca(2+), Mn(2+), Zn(2+) and Mg(2+) than wild-type, respectively, during cultivation in a minimal medium under normal conditions. The deletion mutant also showed mild defects in conidial germination, vegetative growth, thermotolerance, UV-B resistance and virulence despite null response to oxidative and osmotic stresses. All these phenotypic changes were restored by targeted gene complementation. Our results indicate that bMiro can control mitochondrial distribution and movement required for the transport of ATP-form energy and metal ions and contributes significantly to the fungal potential against insect pests through the control.


Assuntos
Beauveria/genética , Insetos/microbiologia , Mitocôndrias/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Beauveria/enzimologia , Parede Celular/enzimologia , Parede Celular/genética , Regulação Fúngica da Expressão Gênica , Hifas/enzimologia , Hifas/genética , Mitocôndrias/enzimologia , Pressão Osmótica , Proteínas de Saccharomyces cerevisiae/genética , Esporos Fúngicos/crescimento & desenvolvimento
8.
Sensors (Basel) ; 16(11)2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27809272

RESUMO

The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km² and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2) surface based on flight test data which measured the near- and short-wave infrared (NIR) reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM) platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight's observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2's XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

9.
Fungal Genet Biol ; 82: 85-94, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162967

RESUMO

Two Ras ATPases (Ras1 and Ras2) are well known to regulate antagonistically or cooperatively various cellular events in many fungi. Here we show the significance of a novel Ras homolog (Ras3) for Beauveria bassiana. Ras3 possesses five domains and two GTP/GDP switches typical for Ras family and was proven to localize to plasma membrane despite the position change of a membrane-targeting cysteine in C-terminal CAAX motif. Deletion of ras3 altered temporal transcription pattern of ras1 instead of ras2. Compared with wild-type, Δras3 grew significantly faster in a rich medium but slower in some minimal media, and produced far fewer conidia with impaired quality, which was evident with slower germination, attenuated virulence, reduced thermotolerance and decreased UV-B resistance. Moreover, Δras3 was much more sensitive to the oxidative stress of menadione than of H2O2 and to the stress of high osmolarity than of cell wall perturbation during growth. The high sensitivity of Δras3 to menadione was concurrent with reductions in both gene transcripts and total activity of superoxide dismutases. Intriguingly, the high osmosensitivity was concurrent with not only reduced transcripts of a critical transcription factor (Msn2) and most signaling proteins in the high-osmolarity-glycerol pathway of Δras3 but nearly undetectable phosphorylation signal of Hog1 hallmarking the pathway. All the changes were restored by ras3 complementation. Taken together, Ras3 is involved in the Hog1 pathway required for osmoregulation and hence can positively regulate conidiation, germination, multi-stress tolerance and virulence linked to the biological control potential of the filamentous insect pathogen.


Assuntos
Adaptação Biológica , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Adaptação Biológica/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Fúngicas/química , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Insetos/microbiologia , Dados de Sequência Molecular , Mutação , Transporte Proteico , Alinhamento de Sequência , Estresse Fisiológico/genética , Transcrição Gênica , Virulência/genética
10.
Biomed Environ Sci ; 35(12): 1091-1099, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36597288

RESUMO

Objective: Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are major public health and social issues worldwide. The long-term follow-up of COVID-19 with pulmonary TB (PTB) survivors after discharge is unclear. This study aimed to comprehensively describe clinical outcomes, including sequela and recurrence at 3, 12, and 24 months after discharge, among COVID-19 with PTB survivors. Methods: From January 22, 2020 to May 6, 2022, with a follow-up by August 26, 2022, a prospective, multicenter follow-up study was conducted on COVID-19 with PTB survivors after discharge in 13 hospitals from four provinces in China. Clinical outcomes, including sequela, recurrence of COVID-19, and PTB survivors, were collected via telephone and face-to-face interviews at 3, 12, and 24 months after discharge. Results: Thirty-two COVID-19 with PTB survivors were included. The median age was 52 (45, 59) years, and 23 (71.9%) were men. Among them, nearly two-thirds (62.5%) of the survivors were moderate, three (9.4%) were severe, and more than half (59.4%) had at least one comorbidity (PTB excluded). The proportion of COVID-19 survivors with at least one sequela symptom decreased from 40.6% at 3 months to 15.8% at 24 months, with anxiety having a higher proportion over a follow-up. Cough and amnesia recovered at the 12-month follow-up, while anxiety, fatigue, and trouble sleeping remained after 24 months. Additionally, one (3.1%) case presented two recurrences of PTB and no re-positive COVID-19 during the follow-up period. Conclusion: The proportion of long symptoms in COVID-19 with PTB survivors decreased over time, while nearly one in six still experience persistent symptoms with a higher proportion of anxiety. The recurrence of PTB and the psychological support of COVID-19 with PTB after discharge require more attention.


Assuntos
COVID-19 , Tuberculose Pulmonar , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , COVID-19/complicações , Seguimentos , Estudos Prospectivos , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/diagnóstico , Sobreviventes
11.
Cells ; 9(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151014

RESUMO

Non-rhythmic conidiation favors large-scale production of conidia serving as active ingredients of fungal insecticides, but its regulatory mechanism is unknown. Here, we report that two FREQUENCY (FRQ) proteins (Frq1/2) governed by a unique FRQ-interacting RNA helicase (FRH) orchestrate this valuable trait in Beauveria bassiana, an asexual insect-pathogenic fungus. Frq1 (964 aa) and Frq2 (583 aa) exhibited opposite expression dynamics (rhythms) in nucleus and steadily high expression levels in cytoplasm under light or in darkness no matter whether one of them was present or absent. Such opposite nuclear dynamics presented a total FRQ (pooled Frq1/2) level sufficient to persistently activate central developmental pathway in daytime and nighttime and supports continuous (non-rhythmic) conidiation for rapid maximization of conidial production in a fashion independent of photoperiod change. Importantly, both nuclear dynamics and cytoplasmic stability of Frq1 and Frq2 were abolished in the absence of the FRH-coding gene nonessential for the fungal viability, highlighting an indispensability of FRH for the behaviors of Frq1 and Frq2 in both nucleus and cytoplasm. These findings uncover a novel circadian system more complicated than the well-known Neurospora model that controls rhythmic conidiation, and provide a novel insight into molecular control of non-rhythmic conidiation in B. bassiana.


Assuntos
Beauveria/genética , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Esporos Fúngicos/genética , Humanos , Mutagênese/genética , Fenótipo , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA