Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833670

RESUMO

Bismuth-based chalcogenides have emerged as promising candidates for next-generation, solution-processable semiconductors, mainly benefiting from their facile fabrication, low cost, excellent stability, and tunable optoelectronic properties. Particularly, the recently developed AgBiS2 solar cells have shown striking power conversion efficiencies. High performance bismuth-based photodetectors have also been extensively studied in the past few years. However, the fundamental properties of these Bi-based semiconductors have not been sufficiently investigated, which is crucial for further improving the device performance. Here, we introduce multiple time-resolved and steady-state techniques to fully characterize the charge carrier dynamics and charge transport of solution-processed Bi-based nanocrystals. It was found that the Ag-Bi ratio plays a critical role in charge transport. For Ag-deficient samples, silver bismuth sulfide thin films behave as localized state induced hopping charge transport, and the Ag-excess samples present band-like charge transport. This finding is crucial for developing more efficient Bi-based semiconductors and optoelectronic devices.

2.
Cytometry A ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842356

RESUMO

Optofluidic time-stretch imaging flow cytometry (OTS-IFC) provides a suitable solution for high-precision cell analysis and high-sensitivity detection of rare cells due to its high-throughput and continuous image acquisition. However, transferring and storing continuous big data streams remains a challenge. In this study, we designed a high-speed streaming storage strategy to store OTS-IFC data in real-time, overcoming the imbalance between the fast generation speed in the data acquisition and processing subsystem and the comparatively slower storage speed in the transmission and storage subsystem. This strategy, utilizing an asynchronous buffer structure built on the producer-consumer model, optimizes memory usage for enhanced data throughput and stability. We evaluated the storage performance of the high-speed streaming storage strategy in ultra-large-scale blood cell imaging on a common commercial device. The experimental results show that it can provide a continuous data throughput of up to 5891 MB/s.

3.
BMC Urol ; 24(1): 44, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374098

RESUMO

OBJECTIVES: To compare the efficacy and safety of thulium fiber laser (TFL) to holmium: YAG (Ho: YAG) laser in ureteroscopic lithotripsy for urolithiasis. METHODS: PubMed, Web of Science, Embase, CENTRAL, SinoMed, CNKI database, VIP and Wanfang Database were systematically searched for all relevant clinical trials until September 2023. References were explored to identify the relevant articles. Meta-analysis was carried out for the retrieved studies using RevMan5.4.1 software, and the risk ratio, mean difference and 95% confidence interval were expressed. Statistical significance was set at p < 0.05. The main outcomes of this meta-analysis were stone-free rate (SFR), perioperative outcomes and intraoperative or postoperative complications. RESULTS: Thirteen studies, including 1394 patients, were included. According to the results of pooled analysis, TFL was associated with significantly higher stone-free rate (SFR) [0.52, 95% CI (0.32, 0.85), P = 0.009], shorter operation time [-5.47, 95% CI (-8.86, -2.08), P = 0.002], and less stone migration [0.17, 95% CI (0.06, 0.50), P = 0.001]. However, there was no significant difference in terms of the laser time, duration of hospital stay, drop of hemoglobin level, total energy, postoperative ureteral stenting, the incidence of intraoperative complications or postoperative complications between TFL and Ho: YAGs. CONCLUSION: The findings of this study demonstrated several advantages of TFL in terms of higher SFR, shorter operative time and less stone migration. TRIAL REGISTRATION: The protocol of this systematic review was listed in PROSPERO ( www.crd.york.ac.uk/PROSPERO ) (Protocol number: CRD42022362550).


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Litotripsia , Humanos , Lasers de Estado Sólido/uso terapêutico , Túlio , Litotripsia a Laser/métodos , Ureteroscopia/métodos , Complicações Pós-Operatórias/epidemiologia
4.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717599

RESUMO

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Assuntos
Benzidinas , Colorimetria , Cobre , Fitosteróis , Colorimetria/métodos , Fitosteróis/análise , Fitosteróis/química , Cobre/química , Benzidinas/química , Estruturas Metalorgânicas/química , Limite de Detecção , Catálise , Nanocompostos/química , Oxirredução
5.
J Proteome Res ; 22(2): 368-373, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507870

RESUMO

A tremendous amount of proteomic and phosphoproteomic data has been produced over the years with the development of mass spectrometry techniques, providing us with new opportunities to explore and understand the proteome and phosphoproteome as well as the function of proteins and protein phosphorylation sites. However, a lack of powerful tools that we can utilize to explore these valuable data limits our understanding of the proteome and phosphoproteome, particularly in diseases such as cancer. To address these unmet needs, we established CPPA (Cancer Proteome and Phosphoproteome Atlas), a web tool to mine abnormalities of the proteome and phosphoproteome in cancer based on published data sets. All analysis results are presented in CPPA with a flexible web interface to provide key customization utilities, including general analysis, differential expression profiling, statistical analysis of protein phosphorylation sites, correlation analysis, similarity analysis, survival analysis, pathological stage analysis, etc. CPPA greatly facilitates the process of data mining and therapeutic target discovery by providing a comprehensive analysis of proteomic and phosphoproteomic data in normal and tumor tissues with a simple click, which helps to unlock the precious value of mass spectrometry data by bridging the gap between raw data and experimental biologists. CPPA is currently available at https://cppa.site/cppa.


Assuntos
Neoplasias , Proteoma , Humanos , Proteoma/metabolismo , Proteômica , Mineração de Dados , Espectrometria de Massas , Fosforilação , Fosfoproteínas/metabolismo
6.
Small ; 19(47): e2303746, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488690

RESUMO

To make sodium-ion batteries a realistic option for everyday energy storage, a practicable method is to enhance the kinetics of Na+ reactions through the development of structurally stable electrode materials. This study utilizes ternary Sn-based dichalcogenide (SnS1.5 Se0.5 ) in the design of electrode material to tackle several issues that adversely hinder the performance and longevity of sodium-ion batteries. First, the incorporation of Se into the SnS structure enhances its electrical conductivity and stability. Second, the ternary composition restricts the formation of intermediates during the desodiation/sodiation process, resulting in better electrode reaction reversibility. Finally, SnS1.5 Se0.5 lowers the diffusion barrier of Na, thereby facilitating rapid and efficient ion transport within the electrode material. Moreover, nitrogen and sulfur dual-doped carbon (NS-C) is used to enhance surface chemistry and ionic/electrical conductivity of SnS1.5 Se0.5 , leading to a pseudocapacitive storage effect that presents a promising potential for high-performance energy storage devices. The study has successfully developed a SnS1.5 Se0.5 /NS-C anode, exhibiting remarkable rate capability and cycle stability, retaining a capacity of 647 mAh g-1 even after 10 000 cycles at 5 A g-1 in half-cell tests. In full-cell tests, Na3 V2 (PO4 )3 //SnS1.5 Se0.5 /NS-C delivers a high energy density of 176.6 Wh kg-1 . In addition, the Na+ storage mechanism of SnS1.5 Se0.5 /NS-C is explored through ex situ tests and DFT calculations. The findings suggest that the ternary Sn-based dichalcogenides can considerably enhance the performance of the anode, enabling efficient large-scale storage of sodium. These findings hold great promise for the advancement of high-performance energy storage devices for practical applications.

7.
Cytometry A ; 103(8): 646-654, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36966466

RESUMO

Essential thrombocythemia (ET) is an uncommon situation in which the body produces too many platelets. This can cause blood clots anywhere in the body and results in various symptoms and even strokes or heart attacks. Removing excessive platelets using acoustofluidic methods receives extensive attention due to their high efficiency and high yield. While the damage to the remaining cells, such as erythrocytes and leukocytes is yet evaluated. Existing cell damage evaluation methods usually require cell staining, which are time-consuming and labor-intensive. In this paper, we investigate cell damage by optical time-stretch (OTS) imaging flow cytometry with high throughput and in a label-free manner. Specifically, we first image the erythrocytes and leukocytes sorted by acoustofluidic sorting chip with different acoustic wave powers and flowing speed using OTS imaging flow cytometry at a flowing speed up to 1 m/s. Then, we employ machine learning algorithms to extract biophysical phenotypic features from the cellular images, as well as to cluster and identify images. The results show that both the errors of the biophysical phenotypic features and the proportion of abnormal cells are within 10% in the undamaged cell groups, while the errors are much greater than 10% in the damaged cell groups, indicating that acoustofluidic sorting causes little damage to the cells within the appropriate acoustic power, agreeing well with clinical assays. Our method provides a novel approach for high-throughput and label-free cell damage evaluation in scientific research and clinical settings.


Assuntos
Algoritmos , Aprendizado de Máquina , Citometria de Fluxo/métodos , Imagem Óptica/métodos , Leucócitos
8.
Glycoconj J ; 40(3): 355-373, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097318

RESUMO

After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.


Assuntos
Carboidratos , Cicatrização , Glicosilação , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
9.
Small ; 18(52): e2205017, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36354183

RESUMO

With a high energy density, lithium-sulfur batteries (LSB) are regarded as one of the promising next-generation energy storage systems. However, many challenges hinder the practical applications of LSB, such as the dendrite formations/parasitic reactions on the Li metal anode and the "shuttle effect" of lithium polysulfides of the LSB cathode. Herein, a novel diluted medium-concentrated electrolyte (DMCE) is developed by adding 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE) into a dual salt medium-concentrated electrolyte (MCE) consisting of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-lithium bis(fluorosulfonyl)imide (LiFSI)/tetrahydrofuran (THF)-dipropyl ether (DPE). The optimized DMCE electrolyte is capable of protecting the Li metal anode and suppresses the dissolution of polysulfides and the "shuttle effect", delivering a high coulombic efficiency (CE) of Li plating-stripping up to 99.6% even at a low concentration of Li salt (1.0-2.0 m). Impressively, compared with the cells cycled in the MCE electrolyte, the LiS cells with the DMCE-2.0 m electrolyte have delivered an enhanced initial capacity of 682 mAh g-1 with an excellent capacity retention of 92% for 500 cycles. This strategy of using fluorinated ether as diluent solvent in a medium-concentrated electrolyte can accelerate the commercialization of LSB.

10.
Opt Express ; 30(24): 42944-42955, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523004

RESUMO

Laser direct writing (LDW) is a promising candidate for the fabrication of all-dielectric THz absorbers for its high flexibility and material compatibility. However, multi-step processing or multi-layer materials are required to compensate for the nonideal features of LDW to realize good absorption performance. To further explore the potential of LDW in flexible and cost-effective THz absorber fabrication, in this work, we demonstrate a design method of THz absorbers fully considering and utilizing the characteristics of laser processing. Specifically, we first numerically analyze that by properly combining basic structures processed by single-step LDW, good and adjustable absorption performance can be achieved on a single-layer substrate. Then we experimentally fabricate THz absorbers by processing periodic composite structures, which are combined by grooves and circular holes, on single-layer doped silicon using LDW. Experimental results show that our method can fabricate THz absorbers at a speed of 3.3 mm2/min with an absorptivity above 90% over a broadband of 1.8-3 THz. Our method provides a promising solution for the flexible and efficient fabrication of all-dielectric broadband THz absorbers.

11.
Opt Express ; 30(10): 16031-16043, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221456

RESUMO

Refractive index (RI) sensing plays an important role in analytical chemistry, medical diagnosis, and environmental monitoring. The optofluidic technique is considered to be an ideal tool for RI sensor configuration for its high integration, high sensitivity, and low cost. However, it remains challenging to achieve RI measurement in real time with high sensitivity and low detection limit (DL) simultaneously. In this work, we design and fabricate a RI sensor with an arched optofluidic waveguide by monitoring the power loss of the light passing through the waveguide, which is sandwiched by the air-cladding and the liquid-cladding under test, we achieve RI detection of the sample in real time and with high sensitivity. Furthermore, both numerical simulation and experimental investigation show that our RI sensor can be designed with different geometric parameters to cover multiple RI ranges with high sensitivities for different applications. Experimental results illustrate that our sensor is capable to achieve a superior sensitivity better than -19.2 mW/RIU and a detection limit of 5.21×10-8 RIU in a wide linear dynamic range from 1.333 to 1.392, providing a promising solution for real-time and high-sensitivity RI sensing.


Assuntos
Refratometria , Simulação por Computador , Refratometria/métodos
12.
Opt Lett ; 47(18): 4822-4825, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107099

RESUMO

Sequentially timed all-optical mapping photography (STAMP) is an effective tool for observing ultrafast and non-repetitive events. In the classical design of STAMP, the spatial resolution of the acquired images is different in two directions, severely limiting the scalability of STAMP. Here, by introducing an asymmetric optical design, we make the slicing mirror locate in the hybrid plane of the system, i.e., the image plane in the direction of the short edge, while the Fourier plane is in the direction of the long edge. This avoids the loss of the high-frequency components of the images and hence offers the possibility to further extend the frame number of the system.

13.
BMC Endocr Disord ; 22(1): 26, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045841

RESUMO

BACKGROUND: Though many randomized control trials had examined the effectiveness and safety of taking insulin therapy with or without metformin, there are limited real-world data, especially among Chinese type 2 diabetes patients initiating basal insulin (BI) with uncontrolled hyperglycemia by oral agents. This study was designed to assess the effectiveness and safety of BI therapy combined with or without metformin in a real-world national cohort study. METHODS: Patients with type 2 diabetes mellitus who initiated BI treatment due to uncontrolled hyperglycemia (HbA1c≥7 %) by oral antidiabetic drugs (OADs) were recruited in Chinese real-world settings between 2011 and 2013. A total of 12,358 patients initiated BI without bolus insulin and completed a 6-month follow-up were selected as the study population and divided into BI with metformin or BI without metformin group based on whether metformin was simultaneously prescribed or not at baseline. Propensity score adjustment was used to balance baseline covariates between two groups. A sub-analysis was also conducted among 8,086 patients who kept baseline treatment regimen during the follow-up. Outcomes were HbA1c, hypoglycemia, weight gain and insulin dose in two groups. RESULTS: 53.6 % (6,621 out of 12,358) patients initiated BI therapy concomitant with metformin. After propensity score adjustment, multivariate regression analysis controlled with number of OADs, total insulin dose, physical activity and diet consumption showed that BI with metformin group had a slightly higher control rate of HbA1c <7.0 % (39.9 % vs. 36.4 %, P = 0.0011) at 6-month follow-up, and lower dose increment from baseline to 6-month (0.0064 vs. 0.0068 U/day/kg, P = 0.0035). The sub-analysis with patients remained at same BI therapy further showed that BI with metformin group had higher HbA1c control rate (47.9 % vs. 41.9 %, P = 0.0001), less weight gain (-0.12 vs. 0.15 kg P = 0.0013), and lower dose increment during 6-month follow-up (0.0033 vs. 0.0037 U/day/kg, P = 0.0073) when compared with BI without metformin group. CONCLUSIONS: In alliance with current guidelines, the real-world findings also support the insulin initiation together with metformin. Continuous patients' education and clinicians training are needed to improve the use of metformin when initiating BI treatment.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Metformina/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Feminino , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Aumento de Peso
14.
Appl Opt ; 61(25): 7315-7322, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256028

RESUMO

Laser polishing of glass optical elements is considered to be a promising processing technology. However, mid-frequency waviness (MFW) is an important defect affecting the practical application of laser polishing. The formation mechanism of MFW has been studied in different aspects. Here, the correlation between fictive temperature and MFW caused by laser polishing is studied on fused silica for the first time. We heat the fused silica samples by a CO2 laser and quench them in air to simulate different fictive temperatures. Then the changes of the Si-O-Si bond angle are measured by a Fourier infrared spectrometer, which is associated with the density of glass. Combining experimental data and laser polishing temperature field simulation, we could find that, although it is not the main factor of MFW formation, the effect of fictive temperature on MFW cannot be ignored. The result provides a meaningful reference for the process of laser polishing glass optical elements.

15.
Eur J Cancer Care (Engl) ; 31(3): e13566, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229931

RESUMO

INTRODUCTION: Widespread adoption of the human papillomavirus (HPV) vaccine will require population acceptance and tailoring of immunisation services to community needs and preferences. We examined peer-reviewed publications on the acceptability of and barriers to the HPV vaccine across China. METHODS: We searched English (MEDLINE, Embase, and Web of Science) and Chinese (CNKI, VIP, Wanfang data) databases between 1 January 2006 and 31 December 2017. We adopted a narrative approach for data synthesis. RESULTS: We identified 73 studies. The overall median acceptability of HPV vaccine was 71.8% (Q1-Q3: 58.6%-81%). Low levels of acceptability (<40%) of HPV vaccine were found in eastern regions of China. The largest differences of acceptability were observed between rural western regions (all >90%) and urban eastern regions (all <35%). Despite these regional variations, common barriers to HPV vaccine acceptance were concerns about vaccine safety, uncertainty over vaccine effectiveness, low perceived risk of cervical cancer and the price of the vaccine. The level of willingness to pay for the HPV vaccine (over 153 US dollars) was very low (<7%). CONCLUSION: The acceptability of and attitudes towards HPV vaccine vary by regions and populations across China. HPV vaccination programmes will need to tailor service delivery as well as information materials to take account of regional concerns.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , China , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Infecções por Papillomavirus/prevenção & controle , Aceitação pelo Paciente de Cuidados de Saúde , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
16.
Entropy (Basel) ; 24(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35455185

RESUMO

Chromosome karyotype analysis is of great clinical importance in the diagnosis and treatment of diseases. Since manual analysis is highly time and effort consuming, computer-assisted automatic chromosome karyotype analysis based on images is routinely used to improve the efficiency and accuracy of the analysis. However, the strip-shaped chromosomes easily overlap each other when imaged, significantly affecting the accuracy of the subsequent analysis and hindering the development of chromosome analysis instruments. In this paper, we present an adversarial, multiscale feature learning framework to improve the accuracy and adaptability of overlapping chromosome segmentation. We first adopt the nested U-shaped network with dense skip connections as the generator to explore the optimal representation of the chromosome images by exploiting multiscale features. Then we use the conditional generative adversarial network (cGAN) to generate images similar to the original ones; the training stability of the network is enhanced by applying the least-square GAN objective. Finally, we replace the common cross-entropy loss with the advanced Lovász-Softmax loss to improve the model's optimization and accelerate the model's convergence. Comparing with the established algorithms, the performance of our framework is proven superior by using public datasets in eight evaluation criteria, showing its great potential in overlapping chromosome segmentation.

17.
Anal Chem ; 93(17): 6698-6705, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33871972

RESUMO

There is a growing concern about the effects of nanoplastics on biological safety and human health because of their global ubiquity in the environment. Methodologies for quantitative analysis of nanoplastics are important for the critical evaluation of their possible risks. Herein, a sensitive yet simple and environmentally friendly extraction approach mediated by protein corona is developed and coupled to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) for nanoplastic determination in environmental waters. The developed methodology involved the formation of protein corona by addition of bovine serum albumin (BSA) to samples and protein precipitation via salting out. Then, the resulting extract was directly introduced to Py-GC/MS for nanoplastic mass quantification. Taking 50 nm polystyrene (PS) particles as a model, the highest extraction efficiency for nanoplastics was achieved under the extraction conditions of BSA concentration of 20 mg/L, equilibration time of 5 min, pH 3.0, 10% (w/v) NaCl, incubation temperature of 80 °C, and incubation period of 15 min. The extraction was confirmed to be mediated by the protein corona by transmission electron microscopy (TEM) analysis of the extracted nanoplastics. In total, 1.92 and 2.82 µg/L PS nanoplastics were detected in river water and the influent of wastewater treatment plant (WWTP), respectively. Furthermore, the feasibility of the present methodology was demonstrated by applying to extract PS and poly(methyl methacrylate) (PMMA) nanoplastics from real waters with recoveries of 72.1-98.9% at 14.2-50.4 µg/L spiked levels. Consequently, our method has provided new insights and possibilities for the investigation of nanoplastic pollution and its risk assessment in the environment.


Assuntos
Coroa de Proteína , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Microplásticos , Poliestirenos/análise , Pirólise , Poluentes Químicos da Água/análise
18.
World J Urol ; 39(12): 4465-4470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34241685

RESUMO

OBJECTIVE: To observe the efficacy and safety of Mirabegron in patients with distal, ureteral stones ≤ 10 mm. PATIENTS AND METHODS: A total of 90 patients with distal ureteral stones ≤ 10 mm were prospectively randomized into two groups. Forty-five cases in the study group and 45 cases as control. The stone-free rates (SFRs) and renal colic episodes between two groups were compared at the 1st, 2nd and 4th week end by imaging examinations. RESULT: All of 90 patients were randomly assigned to two groups. In patients with ≤ 5 mm stones, the SFRs in the 1st week (63.6% vs. 33.3%, P = 0.040), the 2nd week (86.4% vs. 54.2%, P = 0.018), and the 4th week (90.9% vs. 66.7%, P = 0.046) after treatment were all significantly higher than that in the control group by the stratification analysis of stone size. Even though SFRs were all higher for patients with > 5 mm stones in study group, there was no statistically significant difference (All P > 0.05). In terms of renal colic episodes, the frequency of occurrence of the study group was significantly lower than that of the control group and need less antalgic. CONCLUSIONS: The MET with Mirabegron has a significant role in improve SFR for the patients with distal ureteral stones ≤ 5 mm and no effect in > 5 mm stones. Furthermore, Mirabegron reduces the need for antalgic in ≤ 10 mm stones with low incidence of adverse effects.


Assuntos
Acetanilidas/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Tiazóis/uso terapêutico , Cálculos Ureterais/tratamento farmacológico , Acetanilidas/efeitos adversos , Agonistas de Receptores Adrenérgicos beta 3/efeitos adversos , Adulto , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tiazóis/efeitos adversos , Resultado do Tratamento , Cálculos Ureterais/patologia
19.
Environ Sci Technol ; 55(5): 3032-3040, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600167

RESUMO

Micro- and nanoplastics unavoidably enter into organisms and humans as a result of widespread exposures through drinking waters, foods, and even inhalation. However, owing to the limited availability of quantitative analytical methods, the effect of nanoplastics inside animal bodies is poorly understood. Herein, we report a sensitive and robust method to determine the chemical composition, mass concentration, and size distribution of nanoplastics in biological matrices. This breakthrough is based on a novel procedure including alkaline digestion and protein precipitation to extract nanoplastics from tissues of aquatic animals, followed by quantitative analysis with pyrolysis gas chromatography-mass spectrometry. The optimized procedure exhibited good reproducibility and high sensitivity with the respective detection limits of 0.03 µg/g for polystyrene (PS) nanoplastics and 0.09 µg/g poly(methyl methacrylate) (PMMA) nanoplastics. This method also preserved the original morphology and size of nanoplastics. Furthermore, to demonstrate the feasibility of the proposed method, 14 species of aquatic animals were collected, and PS nanoplastics in a concentration range of 0.093-0.785 µg/g were detected in three of these animals. Recovery rates of 73.0-89.1% were further obtained for PS and PMMA nanospheres when they were spiked into the tissues of Zebra snail and Corbicula fluminea at levels of 1.84-2.12 µg/g. Consequently, this method provides a powerful tool for tracking nanoplastics in animals.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Animais , Microplásticos , Polimetil Metacrilato , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise
20.
Anal Chem ; 92(7): 4765-4770, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32075371

RESUMO

Toxicity and transport of metal-based nanoparticles (M-NPs) in environmental waters strongly depend on their speciation. A detailed understanding of the composition and speciation of M-NPs is necessary in order to move this field forward. Unfortunately, there is a shortage of analytical methods for metal-sulfide nanoparticles (MS-NPs) in the environment. In this work, a cloud point extraction (CPE) method combined with liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (LC-ICPMS) is developed for sensitive determination of Ag2S- and ZnS-NPs. Under the condition of 0.15% (w/v) of Triton X-114 (TX-114), pH 5, 20 mM NaNO3, incubation temperature of 45 °C, and time of 15 min, MS-NPs and non-MS-NPs were extracted into the surfactant-rich phase. With the sequent addition of 10 mM bis(p-sulfonatophenyl)phenylphosphane dehydrate dipotassium (BSPP) aqueous solution (100 µL) into the CPE-obtained extract, the non-MS-NPs were selectively dissociated into their ionic counterparts while maintaining the original size and shape of Ag2S- and ZnS-NPs. Interestingly, the micelle-mediated behavior suddenly disappeared with the addition of BSPP. Thus, the extract can be injected to LC-ICPMS for speciation analysis of trace Ag2S- and ZnS-NPs. This method exhibited excellent reproducibility (relative standard deviations < 4.9%), high sensitivity with the respective detection limits of 8 ng/L for Ag2S-NPs and 15 ng/L for ZnS-NPs, enabling recoveries of 81.3-96.6% for Ag2S-NPs and 83.9-93.5% for ZnS-NPs when they were spiked into three environmental water samples. Due to its potential applicability to low concentrations of Ag2S- and ZnS-NPs, this method is particularly convenient for monitoring the transformations of AgNPs and ZnO-NPs in the environment.


Assuntos
Monitoramento Ambiental , Nanopartículas/análise , Compostos de Prata/análise , Sulfetos/análise , Poluentes Químicos da Água/química , Compostos de Zinco/análise , Fracionamento Químico , Cromatografia Líquida , Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA