Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nano Lett ; 23(8): 3614-3622, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37017682

RESUMO

Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.

2.
J Am Chem Soc ; 145(23): 12853-12860, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37263965

RESUMO

Chemiresistive sensing has been regarded as the key monitoring technique, while classic oxide gas detection devices always need an external power supply. In contrast, the bulk photovoltage of photoferroelectric materials could provide a controllable power source, holding a bright future in self-powered gas sensing. Herein, we present a new photoferroelectric ([n-pentylaminium]2[ethylammonium]2Pb3I10, 1), which possesses large spontaneous polarization (∼4.8 µC/cm2) and prominent visible-photoactive behaviors. Emphatically, driven by the bulk photovoltaic effect, 1 enables excellent self-powered sensing responses for NO2 at room temperature, including extremely fast response/recovery speeds (0.15/0.16 min) and high sensitivity (0.03 ppm-1). Such figures of merit are superior to those of typical inorganic systems (e.g., ZnO) using an external power supply. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements confirm the great selectivity of 1 for NO2. As far as we know, this is the first realization of ferroelectricity-driven self-powered gas detection. Our work sheds light on the self-powered sensing systems and provides a promising way to broaden the functionalities of photoferroelectrics.

3.
Angew Chem Int Ed Engl ; 62(51): e202313833, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37942505

RESUMO

Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to "find" and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2 S and PbS. The resultant Cu2 S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs.

4.
Angew Chem Int Ed Engl ; 62(31): e202305977, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289538

RESUMO

The electronic conductivity (EC) of metal-organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H2 O on the EC of MOFs is rarely reported. We explored the effect of H2 O on the EC in the MOFs (NH2 )2 -MIL-125 and its derivatives with experimental and theoretical investigations. Unexpectedly, a large EC increase of 107 on H2 SO4 @(NH2 )2 -MIL-125 by H2 O was observed. Brønsted acid-base pairs formed with the -NH2 groups, and H2 SO4 played an important role in promoting the charge transfer from H2 O to the MOF. Based on H2 SO4 @(NH2 )2 -MIL-125, a high-performance chemiresistive humidity sensor was developed with the highest sensitivity, broadest detection range, and lowest limit of detection amongst all reported sensing materials to date. This work not only demonstrated that H2 O can remarkably influence the EC of MOFs, but it also revealed that post-modification of the structure of MOFs could enhance the influence of the guest molecule on their EC to design high-performance sensing materials.

5.
Angew Chem Int Ed Engl ; 62(26): e202302996, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106275

RESUMO

Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Solventes , Catálise
6.
Angew Chem Int Ed Engl ; 61(27): e202203151, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441775

RESUMO

The modification of inorganic two-dimensional (2D) materials with organic functional motifs is in high demand for the optimization of their properties, but it is still a daunting challenge. Organic metal chalcogenides (OMCs) are a type of newly emerging 2D materials, with metal chalcogenide layers covalently anchored by long-range ordered organic functional motifs, these materials are extremely desirable but impossible to realize by traditional methods. Both the inorganic layer and organic functional motifs of OMCs are highly designable and thus provide this type of 2D materials with enormous variety in terms of their structure and properties. This Minireview aims to review the latest developments in OMCs and their bulk precursors. Firstly, the structure types of the bulk precursors for OMCs are introduced. Second, the synthesis and applications of OMC 2D materials in photoelectricity, catalysis, sensors, and energy transfer are explored. Finally, the challenges and perspectives for future research on OMCs are discussed.

7.
Angew Chem Int Ed Engl ; 60(36): 19710-19714, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34240809

RESUMO

Organic-inorganic hybrid superlattices (OIHSLs) hold attractive physical and chemical properties, while the construction of single-crystal covalent OIHSLs has not been achieved. Herein a coordination assembly strategy was proposed to create a single-crystal covalent OIHSL PbBDT (BDT=1,4-benzenedithiolate), where layered [PbS2 ] sublattice covalently connects with benzene sublattice. The covalent bonding offers better thermo-/chemi-stability, inter-sublattice electron transport, and unique organic-group-functionalized surface, which may enable better performances in chemical applications than non-covalent OIHSL. These features endow PbBDT with the highest sensitivity, the lowest detection limit and excellent selectivity towards NO2 at room temperature among all chemiresistive gas-sensing materials with reported response time less than 2 min without the need of light assistance.

8.
Angew Chem Int Ed Engl ; 60(49): 25758-25761, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633732

RESUMO

High-quality MOF thin films with high orientation and controlled thickness are extremely desired for applications. However, they have been only successfully fabricated on flat substrates. Those MOF 2D thin films are limited by low exposed area and slow mass transport. To overcome these issues, MOF 3D thin films with good crystallinity, preferred orientation, and precisely controllable thickness in nanoscale were successfully prepared in a controllable layer-by-layer manner on nanowire array substrate for the first time. The as-prepared Cu-HHTP 3D thin film is superior to corresponding 2D thin films and showed one of the highest sensitivity, lowest LOD, and fastest response among all reported chemiresistive NH3 sensing materials at RT. This work provides a feasible approach to grow preferred-oriented 3D MOF thin film, offering new perspectives for constructing MOF-based heterostructures for advanced applications.

9.
Angew Chem Int Ed Engl ; 60(3): 1290-1297, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32996683

RESUMO

Arranging ionic liquids (ILs) with long-range order can not only enhance their performance in a desired application, but can also help elucidate the vital between structure and properties. However, this is still a challenge and no example has been reported to date. Herein, we report a feasible strategy to achieve a crystalline IL via coordination self-assembly based reticular chemistry. IL1 MOF, was prepared by designing an IL bridging ligand and then connecting them with metal clusters. IL1 MOF has a unique structure, where the IL ligands are arranged on a long-range ordered framework but have a labile ionic center. This structure enables IL1 MOF to break through the typical limitation where the solid ILs have lower proton conductivity than their counterpart bulk ILs. IL1 MOF shows 2-4 orders of magnitude higher proton conductivity than its counterpart IL monomer across a wide temperature range. Moreover, by confining the IL within ultramicropores (<1 nm), IL1 MOF suppresses the liquid-solid phase transition temperatures to lower than -150 °C, allowing it to function with high conductivity in a subzero temperature range.

10.
Angew Chem Int Ed Engl ; 58(38): 13390-13393, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31321862

RESUMO

In response to ever-increasing application requirements in lighting and displays, a tremendous emphasis is being placed on single-component white-light emission. Single-component inorganic borates doped with rare earth metal ions have shown prominent achievements in white-light emission. The first environmentally friendly defect-induced white-light emitting crystalline inorganic borate, Ba2 [Sn(OH)6 ][B(OH)4 ]2 , has been prepared. Additionally, it is the first borate-stannate without a Sn-O-B linkage. Notably, Ba2 [Sn(OH)6 ][B(OH)4 ]2 shows Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.42, 0.38), an ultrahigh color rendering index (CRI) of 94.1, and an appropriate correlated color temperature (CCT) of 3083 K. Such a promising material will provide a new approach in the development of white-light emitting applications.

11.
Angew Chem Int Ed Engl ; 58(9): 2692-2695, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30614186

RESUMO

Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI2 and the non-radical form of the superlattice.

12.
Angew Chem Int Ed Engl ; 58(42): 14915-14919, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31356720

RESUMO

Heterostructured metal-organic framework (MOF)-on-MOF thin films have the potential to cascade the various properties of different MOF layers in a sequence to produce functions that cannot be achieved by single MOF layers. An integration method that relies on van der Waals interactions, and which overcomes the lattice-matching limits of reported methods, has been developed. The method deposits molecular sieving Cu-TCPP (TCPP=5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin) layers onto semiconductive Cu-HHTP (HHTP=2,3,6,7,10,11-hexahydrotriphenylene) layers to obtain highly oriented MOF-on-MOF thin films. For the first time, the properties in different MOF layers were cascaded in sequence to synergistically produce an enhanced device function. Cu-TCPP-on-Cu-HHTP demonstrated excellent selectivity and the highest response to benzene of the reported recoverable chemiresistive sensing materials that are active at room temperature. This method allows integration of MOFs with cascading properties into advanced functional materials.

13.
J Am Chem Soc ; 140(8): 2805-2811, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29421867

RESUMO

Broad absorption, long-lived photogenerated carriers, high conductance, and high stability are all required for a light absorber toward its real application on solar cells. Inorganic-organic hybrid lead-halide materials have shown tremendous potential for applications in solar cells. This work offers a new design strategy to improve the absorption range, conductance, photoconductance, and stability of these materials. We synthesized a new photochromic lead-chloride semiconductor by incorporating a photoactive viologen zwitterion into a lead-chloride system in the coordinating mode. This semiconductor has a novel inorganic-organic hybrid structure, where 1-D semiconducting inorganic lead-chloride nanoribbons covalently bond to 1-D semiconducting organic π-aggregates. It shows high stability against light, heat, and moisture. After photoinduced electron transfer (PIET), it yields a long-lived charge-separated state with a broad absorption band covering the 200-900 nm region while increasing its conductance and photoconductance. This work is the first to modify the photoconductance of semiconductors by PIET. The observed increasing times of conductivity reached 3 orders of magnitude, which represents a record for photoswitchable semiconductors. The increasing photocurrent comes mainly from the semiconducting organic π-aggregates, which indicates a chance to improve the photocurrent by modifying the organic component. These findings contribute to the exploration of light absorbers for solar cells.

14.
Angew Chem Int Ed Engl ; 55(2): 514-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26549327

RESUMO

Crystalline nanotube array would create great opportunity for novel electrical application. Herein we report the first example of a metal halide based crystalline nanotube array which is constructed from an unprecedented giant [Pb(II)18I54(I2)9] wheel cluster, as determined by synchrotron X-ray diffraction. The electrical properties of the single crystal were studied and the present compound shows typical semiconductivity and highly anisotropic conductivity.

15.
J Am Chem Soc ; 137(2): 913-8, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25551516

RESUMO

On-board fuel cell technology requires proton conducting materials with high conductivity not only at intermediate temperatures for work but also at room temperature and even at subzero temperature for startup when exposed to the colder climate. To develop such materials is still challenging because many promising candidates for the proton transport on the basis of extended microstructures of water molecules suffer from significant damage by heat at temperatures above 80 °C or by freeze below -5 °C. Here we show imidazole loaded tetrahedral polyimides with mesopores and good stability (Im@Td-PNDI 1 and Im@Td-PPI 2) exhibiting a high anhydrous proton conductivity over a wide temperature range from -40 to 90 °C. Among all anhydrous proton conductors, the conductivity of 2 is the highest at temperatures below 40 °C and comparable with the best materials, His@[Al(OH)(1,4-ndc)]n and [Zn3(H2PO4)6(H2O)3](Hbim), above 40 °C.

16.
Adv Mater ; 36(13): e2310795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098293

RESUMO

Solar interfacial water evaporation shows great potential to address the global freshwater scarcity. Water evaporation being inherently energy intensive, Joule-heating assisted solar evaporation for addressing insufficient vapor under natural conditions is an ideal strategy. However, the simultaneous optimization of low evaporation enthalpy, high photothermal conversion, and excellent Joule-heating steam generation within a single material remain a rare achievement. Herein, inspired by the biological channel structures, a large-area film with hierarchical macro/microporous structures is elaborately designed by stacking the nanosheet of a conductive metal-organic framework (MOF), Ni3(HITP)2, on a paper substrate. By combining the above three features in one material, the water evaporation enthalpy reduces from 2455 J g-1 to 1676 J g-1, and the photothermal conversion efficiency increases from 13.75% to 96.25%. Benefiting from the synergistic photothermal and Joule-heating effects, the evaporation rate achieves 2.60 kg m-2 h-1 under one sun plus input electrical power of 4 W, surpassing the thermodynamic limit and marking the highest reported value in MOF-based evaporators. Moreover, Ni3(HITP)2-paper exhibits excellent long-term stability in simulated seawater, where no salt crystallization and evaporation rate degradation are observed. This design strategy for nanosheet films with hierarchical macro/microporous channels provides inspiration for electronics, biological devices, and energy applications.

17.
Inorg Chem ; 52(15): 8865-71, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23837877

RESUMO

Two new different-bond-type hybrid compounds, (Hg6P4Cl3)(PbCl3) (1) and (Hg23P12)(ZnCl4)6 (2), with supramolecular interactions between host and guest moieties, which based on metal-pnicogen, pnicogen-pnicogen, and metal-halogen bonds were obtained by solid-state reactions. Compounds 1 and 2 show large second-harmonic-generation (SHG) activity and are transparent in the wide mid-IR region, providing an effective route for searching new IR nonlinear-optical material systems by combining two or more different bond types with no IR absorption within a single compound through supramolecular assembly. Theory predications based on first-principles calculations are also performed on the SHG properties of 1 and 2.

18.
Fundam Res ; 3(3): 362-368, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933761

RESUMO

Ferroelectric materials have become key components for versatile device applications, and their thin films are highly desirable for integrating the miniaturized devices. Despite substantial endeavors, it is still challenging to achieve effective chemiresistive sensing in the ferroelectric films. Here, for the first time, we have exploited ferroelectric thin films of 2D hybrid perovskite BA2EA2Pb3I10 (1), to fabricate the high-performance chemiresistor gas sensors. The spin-coated films of 1 exhibit high orientation and good crystallinity, thus preserving robust in-plane spontaneous polarization (P s ∼2.0 µC/cm2) and low electric coercivity. Notably, such ferroelectric film-based sensors after electric poling enable the dramatic room-temperature sensing responses to NO2 gas, including high sensitivity (0.05 ppm-1), extremely low detection limit (1 ppm) and fast responding rate (∼6 s). Besides, the chemiresistive responses are remarkably enhanced by threefold (up to 320%) through electric poling. It is proposed that this behavior closely involves with strong in-plane ferroelectric polarization of 1 that generates a built-in electric field inhibiting the recombination of charge carriers. As far as we know, this ferroelectric-based film chemiresisor is one of the best room-temperature sensors for NO2 gas among all the existing candidate materials. These findings highlight great potential of ferroelectrics toward effective chemiresistive performances, and also establish a bright direction to explore their future device applications.

19.
Chem Sci ; 14(18): 4824-4831, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181787

RESUMO

Dangling bond formation for COF materials in a rational manner is an enormous challenge, especially through post-treatment which is a facile strategy while has not been reported yet. In this work, a "chemical scissor" strategy is proposed for the first time to rationally design dangling bonds in COF materials. It is found that Zn2+ coordination in post-metallization of TDCOF can act as an "inducer" which elongates the target bond and facilitates its fracture in hydrolyzation reactions to create dangling bonds. The number of dangling bonds is well-modulated by controlling the post-metallization time. Zn-TDCOF-12 shows one of the highest sensitivities to NO2 in all reported chemiresistive gas sensing materials operating under visible light and room temperature. This work opens an avenue to rationally design a dangling bond in COF materials, which could increase the active sites and improve the mass transport in COFs to remarkably promote their various chemical applications.

20.
Inorg Chem ; 51(7): 4015-9, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22409439

RESUMO

Photochromism of N-methyl-4,4'-bipyridinium (MQ(+)) salts and their metal complexes has never been reported. A series of MQ(+) coordinated halozinc complexes [(MQ)ZnX(3)] (X = Cl (1), Br (2), I (3)) and [(MQ)ZnCl(1.53)I(1.47)](2)(MQ)ZnCl(1.68)I(1.32) (4), with better physicochemical stability than halide salts of the MQ(+) cation, have been found to exhibit different photochromic behaviors. Compounds 1-3 are isostructural, but only 1 and 2 show photochromism. Introduction of partial Cl atoms to nonphotochromic compound 3 yields compound 4, which also displays photochromism. The photochromic response of 1, 2, and 4 indicates the presence of their long-lived charge separation states, which originate from X → MQ(+) electron transfer according to ESR and XPS measurements. Studies on the influence of different coordinated halogen atoms demonstrate that the Cl atom may be a more suitable electron donor than Br and I atoms to design redox photochromic metal complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA