Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Gene Med ; 26(1): e3664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282143

RESUMO

BACKGROUND: The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS: The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS: TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS: These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , Neoplasias Pulmonares/genética , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase
2.
Langmuir ; 40(37): 19861-19869, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39241230

RESUMO

In this study, a Janus BiTeCl/SnSe2 van der Waals (vdW) heterostructure is constructed and systematically investigated for its potential in solar cell applications using first-principles calculations. The heterostructure introduces distinct contact interfaces (Cl-Se and Te-Se), both exhibiting a type-II band alignment. However, the conduction band minimum (CBM) and valence band maximum (VBM) contributions vary, depending on the interface. The Cl-Se interface demonstrates a significantly higher power conversion efficiency (PCE) of 20.11%, attributed to the suitable bandgap of the SnSe2 donor material and a smaller conduction band offset. Both interfaces exhibit enhanced optical properties compared to those of isolated BiTeCl and SnSe2 monolayers. Additionally, the electronic structure of the heterostructure is tunable via biaxial strain and electric fields, enabling further optimization of the PCE. Moreover, optical absorption can be adjusted by biaxial strain and electric fields. These findings position the Janus BiTeCl/SnSe2 heterostructure, particularly the Cl-Se interface, as a promising candidate for next-generation photovoltaic devices, offering both high efficiency and an external tunability.

3.
Langmuir ; 40(6): 3095-3104, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299976

RESUMO

Two-dimensional graphenelike material, hexagonal boron phosphide (h-BP), is a promising candidate for electronic and optoelectronic devices because of its suitable band gap and high carrier mobility. Especially from the ultrahigh lattice thermal conductivity (κl), it exhibits great potential to solve the challenges of future thermal management applications. Here, the excellent lattice thermal transport properties of the h-BP monolayer are systematically analyzed at the atomic level based on the first-principles method. The results show that the ultrahigh κl value of the h-BP monolayer is attributed to its high phonon group velocity and long phonon lifetime and the strong phonon hydrodynamic effect. We further explore the influence of the tensile strain on the thermal transport properties of the h-BP monolayer. As the strain increases from 0 to 8%, the κl value shows a trend of first increasing and then decreasing due to the coeffect of strain-driven changes for phonon harmonicity and anharmonicity. Under a strain of 6%, the κl value of the h-BP monolayer is as high as 795 W/mK at 300 K, which is about 2.22 times larger than that of 357 W/mK without strain. Such a significant increase in the κl value is mainly due to the increased phonon group velocity and decreased Grüneisen parameter caused by strain. This work is helpful to understand the critical role of tensile strain in lattice thermal transport of two-dimensional graphenelike materials. It is conducive to promoting the thermal management application of the h-BP monolayer.

4.
Langmuir ; 40(15): 7992-8001, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38561994

RESUMO

Two-dimensional (2D) materials with a pentagonal structure have many unique physical properties and great potential for applications in electrical, thermal, and optical fields. In this paper, the intrinsic thermal transport properties of 2D pentagonal CX2 (X = N, P, As, and Sb) are comparatively investigated. The results show that penta-CN2 has a high thermal conductivity (302.7 W/mK), while penta-CP2, penta-CAs2, and penta-CSb2 have relatively low thermal conductivities of 60.0, 36.9, and 11.8 W/mK, respectively. The main reason for the high thermal conductivity of penta-CN2 is that the small atomic mass of the N atom is comparable to that of the C atom, resulting in a preferable pentagonal structure with stronger bonds and thus a higher phonon group velocity. The reduction in the thermal conductivity of the other three materials is mainly due to the gradually increased atomic mass from P to Sb, which reduces the phonon group velocity. In addition, the large atomic mass difference does not result in a huge enhancement of the anharmonicity or weakening of the phonon relaxation time. The present work is expected to deepen the understanding of the thermal transport of main group V 2D pentagonal carbons and pave the way for their future applications, also, providing ideas for finding potential thermal management materials.

5.
Phys Chem Chem Phys ; 26(24): 17315-17323, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860395

RESUMO

Halide perovskites have distinguished themselves among the numerous optoelectronic materials due to their versatile processing technology and exceptional optical response. Unfortunately, their stability and toxicity from heavy metals severely hamper their development, in addition to the challenge of further improving photovoltaic performance. Hence, a lead-free perovskite-based heterojunction, C2N/CsGeI3, is investigated using a hybrid density functional, including electron structures, charge density differences, optical properties and more. The study reveals the presence of a built-in electric field directed from the CsGeI3 to the C2N layer. Moreover, based on the work function, it is confirmed that the electrons are transferred in a Z-scheme mechanism after the CsGeI3 contacts with the C2N layer. Under light irradiation, the construction of the C2N/CsGeI3 heterojunction significantly enhances optical absorption within the range of visible-light wavelengths. Additionally, the impact of interfacial strain on the C2N/CsGeI3 is explored and discussed. These findings not only suggest that the C2N/CsGeI3 heterojunction holds promise for photovoltaic applications but also provide a theoretical insight into lead-free perovskite-based functional materials.

6.
Nano Lett ; 23(3): 985-992, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715576

RESUMO

Despite the rapid progress in perovskite light-emitting diodes (PeLEDs), the electroluminescence performance of large-area perovskite devices lags far behind that of laboratory-size ones. Here, we report a 3.5 cm × 3.5 cm large-area PeLED with a record-high external quantum efficiency of 12.1% by creating an amphipathic molecular interface modifier of betaine citrate (BC) between the perovskite layer and the underlying hole transport layer (HTL). It is found that the surface wettability for various HTLs can be efficiently improved as a result of the coexistence of methyl and carboxyl groups in the BC molecules that makes favorable groups to selectively contact with the HTL surface and increases the surface free energy, which greatly facilitates the scalable process of solution-processed perovskite films. Moreover, the luminous performance of perovskite emitters is simultaneously enhanced through the coordination between C═O in the carboxyl groups and Pb dangling bonds.

7.
Molecules ; 29(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39064893

RESUMO

The electrochemical nitrogen reduction reaction (NRR) is an attractive pathway for producing ammonia under ambient conditions. The development of efficient catalysts for nitrogen fixation in electrochemical NRRs has become increasingly important, but it remains challenging due to the need to address the issues of activity and selectivity. Herein, using density functional theory (DFT), we explore ten kinds of triple transition metal atoms (M3 = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) anchored on the C2N monolayer (M3-C2N) as NRR electrocatalysts. The negative binding energies of M3 clusters on C2N mean that the triple transition metal clusters can be stably anchored on the N6 cavity of the C2N structure. As the first step of the NRR, the adsorption configurations of N2 show that the N2 on M3-C2N catalysts can be stably adsorbed in a side-on mode, except for Zn3-C2N. Moreover, the extended N-N bond length and electronic structure indicate that the N2 molecule has been fully activated on the M3-C2N surface. The results of limiting potential screen out the four M3-C2N catalysts (Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N) that have a superior electrochemical NRR performance, and the corresponding values are -0.61 V, -0.67 V, -0.63 V, and -0.66 V, respectively, which are smaller than those on Ru(0001). In addition, the detailed NRR mechanism studied shows that the alternating and enzymatic mechanisms of association pathways on Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N are more energetically favorable. In the end, the catalytic selectivity for NRR on M3-C2N is investigated through the performance of a hydrogen evolution reaction (HER) on them. We find that Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N catalysts possess a high catalytic activity for NRR and exhibit a strong capability of suppressing the competitive HER. Our findings provide a new strategy for designing NRR catalysts with high catalytic activity and selectivity.

8.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930861

RESUMO

Hydrogen generation by photocatalytic water-splitting holds great promise for addressing the serious global energy and environmental crises, and has recently received significant attention from researchers. In this work, a method of assembling GeC/MXY (M = Zr, Hf; X, Y = S, Se) heterojunctions (HJs) by combining GeC and MXY monolayers (MLs) to construct direct Z-scheme photocatalytic systems is proposed. Based on first-principles calculations, we found that all the GeC/MXY HJs are stable van der Waals (vdW) HJs with indirect bandgaps. These HJs possess small bandgaps and exhibit strong light-absorption ability across a wide range. Furthermore, the built-in electric field (BIEF) around the heterointerface can accelerate photoinduced carrier separation. More interestingly, the suitable band edges of GeC/MXY HJs ensure sufficient kinetic potential to spontaneously accomplish water redox reactions under light irradiation. Overall, the strong light-harvesting ability, wide light-absorption range, small bandgaps, large heterointerfacial BIEFs, suitable band alignments, and carrier migration paths render GeC/MXY HJs highly efficient photocatalysts for overall water decomposition.

9.
Small ; 19(10): e2206844, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642855

RESUMO

Designing robust electrocatalysts for water-splitting is essential for sustainable hydrogen generation, yet difficult to accomplish. In this study, a fast and facile two-step technique to synthesize Ru/RuO2 aerogels for catalyzing overall water-splitting under alkaline conditions is reported. Benefiting from the synergistic combination of high porosity, heterointerface, and tensile strain effects, the Ru/RuO2 aerogel exhibits low overpotential for oxygen evolution reaction (189 mV) and hydrogen evolution reaction (34 mV) at 10 mA cm-2 , surpassing RuO2 (338 mV) and Pt/C (53 mV), respectively. Notably, when the Ru/RuO2 aerogels are applied at the anode and cathode, the resultant water-splitting cell reflected a low potential of 1.47 V at 10 mA cm-2 , exceeding the commercial Pt/C||RuO2 standard (1.63 V). X-ray adsorption spectroscopy and theoretical studies demonstrate that the heterointerface of Ru/RuO2 optimizes charge redistribution, which reduces the energy barriers for hydrogen and oxygen intermediates, thereby enhancing oxygen and hydrogen evolution reaction kinetics.

10.
Phys Chem Chem Phys ; 25(3): 2274-2281, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597784

RESUMO

Strong structural asymmetry is actively explored in two-dimensional (2D) materials, because it can give rise to many interesting physical properties. Motivated by the recent synthesis of monolayer Si2Te2, we explored a family of 2D materials, named Janus Si dichalcogenides (JSD), which parallel the Janus transition metal dichalcogenides and exhibit even stronger inversion asymmetry. Using first-principles calculations, we show that their strong structural asymmetry leads to a pronounced intrinsic polar field, sizable spin splitting, and large piezoelectric response. The spin splitting involves an out-of-plane spin component, which is beyond the linear Rashba model. The piezoelectric tensor has a large value in both in-plane d11 coefficient and out-of-plane d31 coefficient, making monolayer JSDs distinct among existing 2D piezoelectric materials. In addition, we find interesting strain-induced phase transitions in these materials. Particularly, there are multiple valleys that compete for the conduction band minimum, which will lead to notable changes in the optical and transport properties under strain. Our work reveals a new family of Si based 2D materials, which could find promising applications in spintronic and piezoelectric devices.

11.
Phys Chem Chem Phys ; 25(36): 24332-24341, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37670676

RESUMO

As a novel type of anisotropic two-dimensional material, extensive attention has been paid to the thermoelectric (TE) properties of FeOCl-type monolayers, such as Al2X2Se2 (X = Cl, Br, I), Sc2I2S2, and Ir2Cl2O2. Recently, theoretical works based on first-principles calculations have been powerful driving forces in field of TE research. In this work, we perform an investigation into the TE properties of Sc2X2Se2 (X = Cl, Br, I) monolayers based on density functional theory (DFT). A study on the stability, including AIMD simulation and phonon calculation, shows the stable structure of Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2 monolayers. Additionally, the electronic and thermal transport properties of Sc2X2Se2 monolayers are anisotropic along the x and y directions. Moreover, the combination of excellent Seebeck coefficient and ultralow lattice thermal conductivity contributes to outstanding ZT values, and the ZT values follow the order: Sc2I2Se2 > Sc2Br2Se2 > Sc2Cl2Se2. At 300 K, we obtained maximum ZT of 0.34, 0.77, and 1.97 for Sc2Cl2Se2, Sc2Br2Se2, and Sc2I2Se2, respectively, by n-type doping in the x direction. These results demonstrate that monolayer Sc2X2Se2 (X = Cl, Br, I) materials are promising thermoelectric materials, Sc2I2Se2 has more desirable properties along the x direction, and n-type doping can significantly enhance the ZT values. Our work lays a foundation for exploring the TE transport properties of FeOCl-type monolayers.

12.
Nanotechnology ; 33(42)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35817003

RESUMO

Two-dimensional (2D) Janus materials have attracted significant attention due to their asymmetrical structures and unique electronic properties. In this work, by using the first-principles calculation based on density functional theory, we systematically investigate the electronic properties of 6 types of Janus-XGa2Y/Graphene van der Waals heterostructures (vdWHs). The results show that the Janus-XGa2Y/Graphene vdWHs are connected by weak interlayer vdW forces and can form n-type Schottky contact, p-type Schottky contact or Ohmic contact when the spin-orbit coupling (SOC) is not considered. However, when considering SOC, only the SeGa2S/G and G/SeGa2S vdWHs show n-type Schottky contact, and other vdWHs show Ohmic contacts. In addition, the Schottky barriers and contact types of SeGa2S/Graphene and Graphene/SeGa2S vdWHs can be effectively modulated by interlayer distance and biaxial strain. They can be transformed from intrinsic n-type Schottky contact to p-type Schottky contact when the interlayer distances are smaller than 2.65 Å and 2.90 Å, respectively. They can also be transformed to Ohmic contact by applying external biaxial strain. Our work can provide useful guidelines for designing Schottky nanodiodes, field effect transistors or other low-resistance nanodevices based on the 2D vdWHs.

13.
Phys Chem Chem Phys ; 24(19): 11743-11757, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506686

RESUMO

Out-of-plane mirror symmetry-breaking provides a powerful tool for engineering the electronic properties and the exciton behavior of two-dimensional materials. Here, by combining time-domain density functional theory with nonadiabatic dynamics, we investigate the underlying mechanism of how the vertical dipole moment modulates the photoexcited carrier transport and the electron-hole recombination dynamics in polar Janus MoSSe/MoS2 stacked heterostructures. It is shown that the stronger nonadiabatic coupling, interlayer-state delocalization and the built-in electric field caused by charge redistribution facilitate a more rapid photocarrier separation across the interface in the S/S stacked bilayer compared with the S/Se bilayer, explaining the experimentally observed stronger photoluminescence quenching effect in the S/S heterostructure. We also found that the photocarrier recombination of the heterostructure with the S/Se interface has a timescale up to nanoseconds, which is ∼4 times longer than that of the S/S bilayer. Such a prolonged recombination time originates from the dipole-weakened nonadiabatic coupling between occupied and unoccupied states instead of quantum coherence and the band gap effect. Overall, Janus MoSSe/MoS2 heterostructures exhibit superior photocatalytic activity, reflecting the ultrafast photocarrier separation triggered by the built-in electric field, suppressed carrier recombination, high solar-to-hydrogen conversion efficiency and the strong absorption coefficient expanding from visible-light to near-infrared-light. The above atomistic and time-domain findings reveal the intrinsic dipole as an effective freedom to regulate the nonadiabatic photocarrier dynamics in Janus-based 2D heterostructures for efficient energy harvesting and optoelectronic applications.

14.
Phys Chem Chem Phys ; 24(6): 3826-3833, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084406

RESUMO

A desired water splitting photocatalyst should not only possess a suitable bandgap and band edge position, but also host the spontaneous progress for overall water splitting without the aid of any sacrificial agents. In this work, we propose a two-dimensional CdS/SnS2 heterostructure (CSHS) as a possible water splitting photocatalyst by first-principles calculations. The CSHS enhances the absorption of visible and infrared light, and the type-II band alignment guarantees the spatial separation of the photoinduced carriers. The induced built-in electric field across the CSHS interface efficiently separates the photoexcited carriers and extends their carrier lifetimes. All these properties make the CSHS a direct Z-scheme system with the hydrogen and oxygen evolution reactions occurring, respectively, at the CdS and SnS2 layers. More encouragingly, the introduction of a S-vacancy into SnS2 could effectively lower the overpotential of the oxygen evolution reaction, thus ensuring the overall water redox reaction to be achieved spontaneously under light irradiation. Our findings suggest that the CSHS is a promising water splitting photocatalyst.

15.
Phys Chem Chem Phys ; 24(41): 25287-25297, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36226481

RESUMO

Direct Z-scheme water-splitting is a promising route to enhancing the photocatalytic performance due to the effective separation of photogenerated carriers while simultaneously preserving the strong oxidation activity of holes and reduction activity of electrons. In this work, the MoSSe/XY2 (X = Hf, Zr; S, Se) heterostructures (HSs) with different contacts are proposed for Z-scheme photocatalytic water-spitting by first principles calculation. The separation of photogenerated carriers for HfSe2/SMoSe and ZrSe2/SMoSe HSs is limited by the type-I band alignment, while the hydrogen production ability of HfSe2/SeMoS and ZrSe2/SeMoS HSs is limited by the lower conduction band edge positions relative to the water reduction potential. The HfS2/SMoSe, HfS2/SeMoS, ZrS2/SMoSe, and ZrS2/SeMoS HSs are direct Z-scheme water-splitting photocatalysts with the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) occurring at the Hf(Zr)S2 layer and MoSSe layer, respectively. More excitingly, the S (or Se) vacancies effectively lower the HER overpotentials. Besides, the solar-to-hydrogen efficiencies are 6.1%, 5.9%, 6.4%, and 6.3% for HfS2/SMoSe, HfS2/SeMoS, ZrS2/SMoSe, and ZrS2/SeMoS HSs, respectively. This work paves the way for designing highly efficient overall water-splitting photocatalysts using 2D materials.

16.
Phys Chem Chem Phys ; 23(26): 14449-14456, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180927

RESUMO

Hybrid perovskites are favoured over other numerous optoelectronic materials, thanks to their rapidly enhanced power conversion efficiency (PCE) and facile processing. At present, future developments are seriously hampered by the high toxicity of heavy metals and poor stability. Inorganic lead-free perovskites, CsSn1-xGexI3-yBry, are herein explored for superior optical performance by first-principles calculations based on density functional theory (DFT). It is unveiled that the valence band maximum (VBM) is mainly occupied by the p-orbit of halide ions, while the conduction band minimum (CBM) is composed of the p-orbit of the metal ion. Moreover, Bader charge analysis shows that CsSn0.5Ge0.5I3 corresponds to the most obvious charge transfer compared to the others. The defect formation energy indicates that perovskite compounds CsSn1-xGexI3-yBry, are more easily synthesized than the series CsSn1-xGexI3, and the physically accessible area is also determined in the coordinate system defined by the chemical potential change of the host atoms, ΔµSn and ΔµI. Additionally, the absorption spectra show that among the doped compounds of the form CsSn0.5Ge0.5I3-yBry, perovskite CsSn0.5Ge0.5I2Br is superior in terms of optical response in the visible-light range. The results shed a new light on the study of highly efficient and stable lead-free perovskite-based solar cells (PSCs).

17.
Phys Chem Chem Phys ; 23(38): 21825-21832, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34553718

RESUMO

Triggered by the recent experimental synthesis of the Janus PtSSe monolayer, we use the first-principles calculations to predict two new Janus photocatalysts PtXO (X = S, Se), based on the systematic investigations of the structural stabilities, electronic structures, band alignments, catalytic activity and optical absorption. The two Janus structures are found to be mechanically, dynamically and thermodynamically stable, and have suitable band edge positions for the overall water splitting. Owing to the high electron mobility (up to 2164.95 cm2 V-1 s-1) and large disparity between the electron and hole mobilities, together with the indirect band gaps and the intrinsic dipole induced built-in electric fields, the photogenerated electrons/holes can be efficiently separated in PtXO. Moreover, the S/Se vacancy can effectively lower the free energy difference of the HER, making the catalytic reactions occur spontaneously under the potentials of photoexcited electrons and holes. Large optical absorption coefficients (105 cm-1) are also confirmed in the visible light range, and the biaxial tensile strain can further enhance the optical absorption while maintaining the capability of the overall water splitting. Our results not only propose two new Janus materials by demonstrating the possibility of experimental realization, but also indicate that PtXO are peculiar candidates for photocatalytic water splitting.

18.
Nanotechnology ; 31(48): 485701, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931462

RESUMO

The electronic structures of two dimensional (2D) CdS/ZnO heterostructure (CdZnHT) consisting of CdS singlelayer (SL) and ZnO SL are explored based on hybrid density functional calculation. The negative interface formation energies suggest the formation of CdZnHT is exothermic. The bandgap of CdZnHT is favorable for absorbing visible light, and the decent band edge position makes it thermodynamically feasible for spontaneous generation of oxygen and hydrogen. The formed electric field across the interface induced by charge transfer will reduce photogenerated carrier recombination and promote carrier migration. Particularly, CdZnHT is a type-II heterostructure. Oxygen generation takes place at ZnO layer and hydrogen production occurs at CdS layer, which will also promote the effective separation and migration of phogogenerated carriers and enhance photocatalytic performance. These findings suggest that 2D CdZnHTs are possible candidates as water-splitting photocatalysts.

19.
Phys Chem Chem Phys ; 22(42): 24446-24454, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33084701

RESUMO

The construction of a heterostructure (HS) is an effective strategy to modulate the desired properties of two-dimensional (2D) materials and to extend their applications. In this paper, based on the density functional theory, we predict a metal-free type-II HS formed by h-BN and C2N single layers. The h-BN/C2N HS possesses a smaller bandgap than individual h-BN and C2N single layers, and it exhibits excellent visible light absorption. Importantly, its band edge positions satisfy the requirements for spontaneous water-splitting. With the assistance of the built-in electric field across the HS and the band offset, the photoinduced carriers can be readily spatially separated. Free energy calculations indicate the high catalytic activity for water oxidation and reduction reactions. The performance can be further enhanced by strain, which modulates the bandgap and the band edge positions of the HS. The band alignment may undergo a transition from type-I to type-II under strain, offering an effective switch for the reaction. The appropriate bandgap, suitable band edge positions, and effective carrier separation make the h-BN/C2N HS a promising candidate for use as a photocatalyst in water-splitting.

20.
Phys Chem Chem Phys ; 22(17): 9587-9592, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32322864

RESUMO

Based on hybrid density functional calculations, the geometrical and electronic structures of a two-dimensional (2D) CdO/CdS heterostructure (HT) formed by a CdO monolayer (ML) and a CdS ML are investigated. The formation of the CdO/CdS HT is exothermic, and the CdO/CdS HT shows excellent ability for visible light absorption. The CdO/CdS HT with a rotation angle of 0° possesses the characteristics of type-II band alignment and strong built-in electric field across the interface, which boost the photogenerated carrier separation. Besides, the band edge positions of the CdO/CdS HT of 0° are energetically favorable for overall water-splitting processes with the pH scope of 0-3.6. Therefore, the CdO/CdS HT is a promising photocatalyst to split water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA