Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7867): 361-369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262215

RESUMO

With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan's New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.

2.
Infect Immun ; 92(3): e0034423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376159

RESUMO

As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.


Assuntos
Periodontite , Porphyromonas gingivalis , Humanos , Virulência , Neuraminidase/genética , Neuraminidase/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Periodontite/microbiologia
3.
Biol Proced Online ; 26(1): 1, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178023

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignancy and a leading cause of cancer-related death with high morbidity and mortality. Methyl-CpG binding domain protein 3 (MBD3), a key epigenetic regulator, is abnormally expressed in several cancers, participating in progression and metastasis. However, the role of MBD3 in GC remains unknown. METHODS: MBD3 expression was assessed via public databases and validated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The prognosis of MBD3 was analysed via bioinformatics based on the TCGA dataset. The migration, invasion and proliferation of GC cells were examined by transwell, wound healing, cell counting kit (CCK)-8, colony-formation and xenograft mouse models. Epithelial-mesenchymal transition (EMT) and phosphatidylinositide 3-kinases/ protein Kinase B (PI3K/AKT) pathway markers were evaluated by Western blotting. RNA sequencing was used to identify the target of MBD3. RESULTS: MBD3 expression was higher in GC tissues and cells than in normal tissues and cells. Additionally, high MBD3 levels were associated with poor prognosis in GC patients. Subsequently, we proved that MBD3 enhanced the migration, invasion and proliferation abilities of GC cells. Moreover, western blot results showed that MBD3 promoted EMT and activated the PI3K/AKT pathway. RNA sequencing analysis showed that MBD3 may increase actin γ1 (ACTG1) expression to promote migration and proliferation in GC cells. CONCLUSION: MBD3 promoted migration, invasion, proliferation and EMT by upregulating ACTG1 via PI3K/AKT signaling activation in GC cells and may be a potential diagnostic and prognostic target.

4.
J Biol Chem ; 298(6): 102036, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35588785

RESUMO

Serum- and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that plays important roles in the cellular stress response. While SGK1 has been reported to restrain inflammatory immune responses, the molecular mechanisms involved remain elusive, especially in oral bacteria-induced inflammatory milieu. Here, we found that SGK1 curtails Porphyromonas gingivalis-induced inflammatory responses through maintaining levels of tumor necrosis factor receptor-associated factor (TRAF) 3, thereby suppressing NF-κB signaling. Specifically, SGK1 inhibition significantly enhances production of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, IL-1ß, and IL-8 in P. gingivalis-stimulated innate immune cells. The results were confirmed with siRNA and LysM-Cre-mediated SGK1 KO mice. Moreover, SGK1 deletion robustly increased NF-κB activity and c-Jun expression but failed to alter the activation of mitogen-activated protein kinase signaling pathways. Further mechanistic data revealed that SGK1 deletion elevates TRAF2 phosphorylation, leading to TRAF3 degradation in a proteasome-dependent manner. Importantly, siRNA-mediated traf3 silencing or c-Jun overexpression mimics the effect of SGK1 inhibition on P. gingivalis-induced inflammatory cytokines and NF-κB activation. In addition, using a P. gingivalis infection-induced periodontal bone loss model, we found that SGK1 inhibition modulates TRAF3 and c-Jun expression, aggravates inflammatory responses in gingival tissues, and exacerbates alveolar bone loss. Altogether, we demonstrated for the first time that SGK1 acts as a rheostat to limit P. gingivalis-induced inflammatory immune responses and mapped out a novel SGK1-TRAF2/3-c-Jun-NF-κB signaling axis. These findings provide novel insights into the anti-inflammatory molecular mechanisms of SGK1 and suggest novel interventional targets to inflammatory diseases relevant beyond the oral cavity.


Assuntos
Perda do Osso Alveolar , Proteínas Imediatamente Precoces , Proteínas Serina-Treonina Quinases , Fator 3 Associado a Receptor de TNF , Perda do Osso Alveolar/genética , Animais , Citocinas/metabolismo , Genes jun , Proteínas Imediatamente Precoces/metabolismo , Imunidade , Inflamação , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Porphyromonas gingivalis/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo
5.
J Neuroinflammation ; 20(1): 161, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422673

RESUMO

Impaired activation and regulation of the extinction of inflammatory cells and molecules in injured neuronal tissues are key factors in the development of epilepsy. SerpinA3N is mainly associated with the acute phase response and inflammatory response. In our current study, transcriptomics analysis, proteomics analysis, and Western blotting showed that the expression level of Serpin clade A member 3N (SerpinA3N) is significantly increased in the hippocampus of mice with kainic acid (KA)-induced temporal lobe epilepsy, and this molecule is mainly expressed in astrocytes. Notably, in vivo studies using gain- and loss-of-function approaches revealed that SerpinA3N in astrocytes promoted the release of proinflammatory factors and aggravated seizures. Mechanistically, RNA sequencing and Western blotting showed that SerpinA3N promoted KA-induced neuroinflammation by activating the NF-κB signaling pathway. In addition, co-immunoprecipitation revealed that SerpinA3N interacts with ryanodine receptor type 2 (RYR2) and promotes RYR2 phosphorylation. Overall, our study reveals a novel SerpinA3N-mediated mechanism in seizure-induced neuroinflammation and provides a new target for developing neuroinflammation-based strategies to reduce seizure-induced brain injury.


Assuntos
Epilepsia do Lobo Temporal , Serpinas , Animais , Camundongos , Astrócitos/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Ácido Caínico/toxicidade , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transdução de Sinais , Serpinas/metabolismo
6.
Arch Biochem Biophys ; 748: 109783, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816421

RESUMO

PURPOSE: Long non-coding RNA urothelial cancer associated 1 (UCA1) serves as an oncogene in various cancers. However, the mechanism underlying the role of UCA1 in pancreatic cancer remains unclear. This study aimed to explore the role of UCA1 in pancreatic cancer. METHODS: The expression and prognosis of UCA1 were analyzed using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The results were validated by immunohistochemistry (IHC) and qRT-PCR. The biofunctions of UCA1 were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The migration abilities and mitochondrial dynamics of PC cells were examined using the Transwell assay, mitochondrial membrane potential (MMP), and fluorescence. The mitochondrial-related protein and MAPK/ERK pathway markers were evaluated using western blotting. RESULTS: UCA1 expression was significantly higher in pancreatic cancer tissues than in normal tissues. High UCA1 expression indicated poor clinical outcomes and was associated with clinical features in patients with pancreatic cancer. Additionally, high UCA1 expression is a potential independent marker for poor prognosis. Subsequently, we demonstrated that UCA1 enhanced the migration capability, increased MMP, enhanced mitochondrial fusion, and inhibited mitochondrial autophagy in pancreatic cancer cells via the MAPK/ERK pathway. CONCLUSION: UCA1 promotes the migration by regulating the mitochondrial dynamics of pancreatic cancer cells via the MAPK/ERK pathway. Our findings suggest that UCA1 may serve as a potential biomarker in pancreatic cancer prognosis.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dinâmica Mitocondrial , Neoplasias da Bexiga Urinária/genética , Movimento Celular , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Pancreáticas
7.
PLoS Biol ; 18(9): e3000825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886690

RESUMO

Microbial dysbiosis in the upper digestive tract is linked to an increased risk of esophageal squamous cell carcinoma (ESCC). Overabundance of Porphyromonas gingivalis is associated with shorter survival of ESCC patients. We investigated the molecular mechanisms driving aggressive progression of ESCC by P. gingivalis. Intracellular invasion of P. gingivalis potentiated proliferation, migration, invasion, and metastasis abilities of ESCC cells via transforming growth factor-ß (TGFß)-dependent Drosophila mothers against decapentaplegic homologs (Smads)/Yes-associated protein (YAP)/Transcriptional coactivator with PDZ-binding motif (TAZ) activation. Smads/YAP/TAZ/TEA domain transcription factor1 (TEAD1) complex formation was essential to initiate downstream target gene expression, inducing an epithelial-mesenchymal transition (EMT) and stemness features. Furthermore, P. gingivalis augmented secretion and bioactivity of TGFß through glycoprotein A repetitions predominant (GARP) up-regulation. Accordingly, disruption of either the GARP/TGFß axis or its activated Smads/YAP/TAZ complex abrogated the tumor-promoting role of P. gingivalis. P. gingivalis signature genes based on its activated effector molecules can efficiently distinguish ESCC patients into low- and high-risk groups. Targeting P. gingivalis or its activated effectors may provide novel insights into clinical management of ESCC.


Assuntos
Infecções por Bacteroidaceae/complicações , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Porphyromonas gingivalis/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Animais , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/mortalidade , Infecções por Bacteroidaceae/patologia , Células Cultivadas , Progressão da Doença , Drosophila , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/microbiologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Feminino , Seguimentos , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Análise de Sobrevida , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP
8.
J Immunol ; 207(1): 268-280, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34162726

RESUMO

Expression and activity of serum- and glucocorticoid-inducible kinase 1 (SGK1) are associated with many metabolic and inflammatory diseases. In this study, we report that SGK1 promotes alternative macrophage polarization and restrains inflammation in the infectious milieu of the gingiva. Inhibition of SGK1 expression or activity enhances characteristics of classically activated (M1) macrophages by directly activating the transcription of genes encoding iNOS, IL-12P40, TNF-α, and IL-6 and repressing IL-10 at message and protein levels. Moreover, SGK1 inhibition robustly reduces the expression of alternatively activated (M2) macrophage molecular markers, including arginase-1, Ym-1, Fizz1, and Mgl-1. These results were confirmed by multiple gain- and loss-of-function approaches, including small interfering RNA, a plasmid encoding SGK1, and LysM-Cre-mediated sgk1 gene knockout. Further mechanistic analysis showed that SGK1 deficiency decreases STAT3 but increases FoxO1 expression in macrophages under M2 or M1 macrophage-priming conditions, respectively. Combined with decreased FoxO1 phosphorylation and the subsequent suppressed cytoplasmic translocation observed, SGK1 deficiency robustly enhances FoxO1 activity and drives macrophage to preferential M1 phenotypes. Furthermore, FoxO1 inhibition abrogates M1 phenotypes, and STAT3 overexpression results in a significant increase of M2 phenotypes, indicating that both FoxO1 and STAT3 are involved in SGK1-mediated macrophage polarization. Additionally, SGK1 differentially regulates the expression of M1 and M2 molecular markers, including CD68 and F4/F80 and CD163 and CD206, respectively, and protects against Porphyromonas gingivalis-induced alveolar bone loss in a mouse model. Taken together, these results have demonstrated that SGK1 is critical for macrophage polarization and periodontal bone loss, and for the first time, to our knowledge, we elucidated a bifurcated signaling circuit by which SGK1 promotes alternative, while suppressing inflammatory, macrophage polarization.


Assuntos
Proteína Forkhead Box O1/imunologia , Proteínas Imediatamente Precoces/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Ativação de Macrófagos/imunologia , Camundongos , Transdução de Sinais/imunologia
9.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38149932

RESUMO

Electrochemical Double Layer Capacitors (EDLCs) with ionic liquid electrolytes outperform conventional ones using aqueous and organic electrolytes in energy density and safety. However, understanding the electrochemical behaviors of ionic liquid electrolytes under compressive/tensile strain is essential for the design of flexible EDLCs as well as normal EDLCs, which are subject to external forces during assembly. Despite many experimental studies, the compression/stretching effects on the performance of ionic liquid EDLCs remain inconclusive and controversial. In addition, there is hardly any evidence of prior theoretical work done in this area, which makes the literature on this topic scarce. Herein, for the first time, we developed an atomistic model to study the processes underlying the electrochemical behaviors of ionic liquids in an EDLC under strain. Constant potential non-equilibrium molecular dynamics simulations are conducted for EMIM BF4 placed between two graphene walls as electrodes. Compared to zero strain, low compression of the EDLC resulted in compromised performance as the electrode charge density dropped by 29%, and the performance reduction deteriorated significantly with a further increase in compression. In contrast, stretching is found to enhance the performance by increasing the charge storage in the electrodes by 7%. The performance changes with compression and stretching are due to changes in the double-layer structure. In addition, an increase in the value of the applied potential during the application of strain leads to capacity retention with compression revealed by the newly performed simulations.

10.
Mol Cancer ; 21(1): 16, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031058

RESUMO

BACKGROUND: Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. METHODS: CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. RESULTS: We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. CONCLUSIONS: This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


Assuntos
Exossomos/metabolismo , Glioma/etiologia , Glioma/metabolismo , Macrófagos/metabolismo , N-Glicosil Hidrolases/genética , RNA Circular/genética , Proteína EWS de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunomodulação , Macrófagos/imunologia , Masculino , Camundongos , Modelos Biológicos , N-Glicosil Hidrolases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteína EWS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Relação Estrutura-Atividade , Ubiquitina/metabolismo
11.
Periodontol 2000 ; 89(1): 154-165, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244980

RESUMO

Oral and esophageal squamous cell carcinomas harbor a diverse microbiome that differs compositionally from precancerous and healthy tissues. Though causality is yet to be definitively established, emerging trends implicate periodontal pathogens such as Porphyromonas gingivalis as associated with the cancerous state. Moreover, infection with P. gingivalis correlates with a poor prognosis, and P. gingivalis is oncopathogenic in animal models. Mechanistically, properties of P. gingivalis that have been established in vitro and could promote tumor development include induction of a dysbiotic inflammatory microenvironment, inhibition of apoptosis, increased cell proliferation, enhanced angiogenesis, activation of epithelial-to-mesenchymal transition, and production of carcinogenic metabolites. The microbial community context is also relevant to oncopathogenicity, and consortia of P. gingivalis and Fusobacterium nucleatum are synergistically pathogenic in oral cancer models in vivo. In contrast, oral streptococci, such as Streptococcus gordonii, can antagonize protumorigenic epithelial cell phenotypes induced by P. gingivalis, indicating functionally specialized roles for bacteria in oncogenic communities. Consistent with the notion of the bacterial community constituting the etiologic unit, metatranscriptomic data indicate that functional, rather than compositional, properties of the tumor-associated communities have more relevance to cancer development. A consistent association of P. gingivalis with oral and orodigestive carcinoma could have diagnostic potential for early detection of these conditions that have a high incidence and low survival rates.


Assuntos
Carcinoma de Células Escamosas , Microbiota , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Fusobacterium nucleatum , Humanos , Neoplasias Bucais/patologia , Porphyromonas gingivalis/genética , Microambiente Tumoral
12.
Br J Cancer ; 125(3): 433-444, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33981017

RESUMO

BACKGROUND: The effect of Porphyromonas gingivalis (Pg) infection on oesophageal squamous cell carcinoma (ESCC) prognosis, chemotherapeutic efficacy, and oesophageal cancer cell apoptosis resistance and proliferation remain poorly understood. METHODS: Clinicopathological data from 312 ESCC oesophagectomy patients, along with the computed tomography imaging results and longitudinal cancerous tissue samples from a patient subset (n = 85) who received neoadjuvant chemotherapy (NACT), were analysed. Comparison of overall survival and response rate to NACT between Pg-infected and Pg-uninfected patients was made by multivariate Cox analysis and Response Evaluation Criteria in Solid Tumours v.1.1 criteria. The influence of Pg on cell proliferation and drug-induced apoptosis was examined in ESCC patients and validated in vitro and in vivo. RESULTS: The 5-year overall survival was lower in Pg-positive patients, and infection was associated with multiple clinicopathological factors and pathologic tumour, node, metastasis stage. Of the 85 patients who received NACT, Pg infection was associated with a lower response rate and 5-year overall survival. Infection with Pg resulted in apoptosis resistance in ESCC and promoted ESCC cell viability, which was confirmed in longitudinal cancerous tissue samples. Pg-induced apoptosis resistance was dependent on fimbriae and STAT3. CONCLUSIONS: Pg infection is associated with a worse ESCC prognosis, reduced chemotherapy efficacy, and can potentiate the aggressive behaviour of ESCC cells.


Assuntos
Infecções por Bacteroidaceae/epidemiologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Porphyromonas gingivalis/patogenicidade , Animais , Infecções por Bacteroidaceae/mortalidade , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Neoplasias Esofágicas/microbiologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Camundongos , Terapia Neoadjuvante , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
FASEB J ; 34(7): 9120-9140, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32433819

RESUMO

Homeostasis between pro- and anti- inflammatory responses induced by bacteria is critical for the maintenance of health. In the oral cavity, pro-inflammatory mechanisms induced by pathogenic bacteria are well-established; however, the anti-inflammatory responses that act to restrain innate responses remain poorly characterized. Here, we demonstrate that infection with the periodontal pathogen Porphyromonas gingivalis enhances the activity of Janus kinase 3 (JAK3) in innate immune cells, and subsequently phospho-inactivates Nedd4-2, an ubiquitin E3 ligase. In turn, Wingless-INT (Wnt) 3 (Wnt3) ubiquitination is decreased, while total protein levels are enhanced, leading to a reduction in pro-inflammatory cytokine levels. In contrast, JAK3 or Wnt3a inhibition robustly enhances nuclear factor kappa-light-chain-enhancer of activated B cells activity and the production of pro-inflammatory cytokines in P. gingivalis-stimulated innate immune cells. Moreover, using gain- and loss-of-function approaches, we demonstrate that downstream molecules of Wnt3a signaling, including Dvl3 and ß-catenin, are responsible for the negative regulatory role of Wnt3a. In addition, using an in vivo P. gingivalis-mediated periodontal disease model, we show that JAK3 inhibition enhances infiltration of inflammatory cells, reduces expression of Wnt3a and Dvl3 in P. gingivalis-infected gingival tissues, and increases disease severity. Together, our results reveal a new anti-inflammatory role for JAK3 in innate immune cells and show that the underlying signaling pathway involves Nedd4-2-mediated Wnt3a ubiquitination.


Assuntos
Infecções por Bacteroidaceae/complicações , Reabsorção Óssea/prevenção & controle , Inflamação/prevenção & controle , Janus Quinase 3/metabolismo , Doenças Periodontais/prevenção & controle , Substâncias Protetoras , Proteína Wnt3A/metabolismo , Animais , Infecções por Bacteroidaceae/microbiologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Janus Quinase 3/genética , Camundongos , Camundongos Endogâmicos C57BL , Doenças Periodontais/etiologia , Doenças Periodontais/metabolismo , Doenças Periodontais/patologia , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais , Proteína Wnt3A/genética
14.
Phys Chem Chem Phys ; 23(48): 27159-27170, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852365

RESUMO

Inorganic solid-state lithium-metal batteries could be the next-generation batteries owing to their non-flammability and higher specific energy density. Many research efforts have been devoted to improving the ionic conductivity of inorganic solid electrolytes. For a wide range of electrolytes including liquid and solid polymer electrolytes, an independent measurement or calculation of both electrolyte conductivity and diffusion coefficient is often time-consuming and challenging. As a result, Nernst-Einstein's relation has been used to relate the ionic conductivity to ionic diffusivity after the determination of either parameter. Although Nernst-Einstein's relation has been used for different electrolytes, we demonstrate in this perspective that this relation is not directly transferable to describe the ionic mobility for many inorganic solid electrolytes. The fundamental physics of Nernst-Einstein's relation shows that the relationship between the diffusion coefficient and electrolyte conductivity is derived for ionic mobility in a viscous or a gaseous medium. This postulation contradicts state-of-the-art experimental studies measuring the mechanical behaviour of inorganic solid electrolytes, which show that inorganic solid electrolytes are usually brittle rather than viscoelastic at ambient room temperature. The measurement of loss tangent is required to justify the use of Nernst-Einstein's relation. The outcome of such measurement has two implications. First, if the loss tangent of inorganic solid electrolytes is less than unity in the range of batteries operating temperatures, the impacts of using Nernst-Einstein's relation in modelling the ionic mobility should be quantified. Secondly, if the measured loss tangent is comparable to that of solid polymers and lithium metal, inorganic solid electrolytes may behave in a viscoelastic manner as opposed to the brittle behaviour usually suggested.

15.
Phys Chem Chem Phys ; 23(14): 8200-8221, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33875989

RESUMO

The expansion of lithium-ion batteries from consumer electronics to larger-scale transport and energy storage applications has made understanding the many mechanisms responsible for battery degradation increasingly important. The literature in this complex topic has grown considerably; this perspective aims to distil current knowledge into a succinct form, as a reference and a guide to understanding battery degradation. Unlike other reviews, this work emphasises the coupling between the different mechanisms and the different physical and chemical approaches used to trigger, identify and monitor various mechanisms, as well as the various computational models that attempt to simulate these interactions. Degradation is separated into three levels: the actual mechanisms themselves, the observable consequences at cell level called modes and the operational effects such as capacity or power fade. Five principal and thirteen secondary mechanisms were found that are generally considered to be the cause of degradation during normal operation, which all give rise to five observable modes. A flowchart illustrates the different feedback loops that couple the various forms of degradation, whilst a table is presented to highlight the experimental conditions that are most likely to trigger specific degradation mechanisms. Together, they provide a powerful guide to designing experiments or models for investigating battery degradation.

16.
Exp Cell Res ; 393(1): 112091, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422133

RESUMO

Methyl-CpG-binding domain 3 (MBD3), as an induced stem cells reprogramming barrier, has an abnormal expression in various prevalent malignancies. However, in pancreatic cancer cell stemness, the roles of MBD3 remain unclear. In our study, the effects of MBD3 were investigated on the proliferation, stemness and the underlying mechanism in pancreatic cancer cells. Firstly, MBD3 knockdown was proved to promote proliferation and sphere formation of pancreatic cancer cells and tumorigenesis, while MBD3 upregulation inhibited the above results. Also, MBD3 downregulation notably increased stemness markers level of OCT4, NANOG and SOX2, and MBD3 upregulation resulted in the opposite effects. Mechanically, it was found that MBD3 involved in activation of Hippo pathway. There was a negative correlation between MBD3 and YAP expression in TCGA database. MBD3 knockdown improved YAP expression, and promoted YAP nuclear translocation increased TEAD luciferase activity, while MBD3 overexpression reversed the above results. Further evidence revealed that YAP could bind to MBD3, and decreased MBD3 expression. Collectively, MBD3 bound to YAP to significantly inhibit proliferation and weaken stemness maintenance in pancreatic cancer cells, as well as reduce tumorigenesis via Hippo signaling. Thus, MBD3 may serve as a potential molecular biomarker for exploring new therapeutic strategies to treat pancreatic cancer.


Assuntos
Proteínas de Ligação a DNA/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Hippo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Pancreáticas
17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(4): 450-453, 2021 Jul 30.
Artigo em Zh | MEDLINE | ID: mdl-34363377

RESUMO

OBJECTIVE: The patient monitors were used to explore the alarm fatigue in a cardiac care unit and to investigate the awareness and reaction of nurse to alarms. METHODS: A semi-structured survey was taken to acquire nurses' feeling and knowledge about monitoring alarm. Three full-time researchers were scheduled to track the alarms with annotations, and analyze the alarm data of 12 patient monitors using central monitoring system. RESULTS: A total of 72 310 unique alarms occurred in the 67-day study period. About 75.7% of them were physiological alarms and less than 10% of medium-low alarms were false positives. The average alarm rate was 128 alarms/patient-day. CONCLUSIONS: There remains alarm fatigue in CCU, the alarm accuracy has improved than the past by applying new technologies. In some cases, clinicians will pay more attention to trend alarm and combination alarm.


Assuntos
Alarmes Clínicos , Arritmias Cardíacas , Eletrocardiografia , Humanos , Monitorização Fisiológica , Inquéritos e Questionários
18.
J Cell Mol Med ; 24(2): 1969-1979, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851779

RESUMO

Protein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up-regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis. Silencing PRMT5 induces epithelial marker E-cadherin expression and down-regulates expression of mesenchymal markers including Vimentin, collagen I and ß-catenin in PaTu8988 and SW1990 cells, whereas ectopic PRMT5 re-expression partially reverses these changes, indicating that PRMT5 promotes EMT in pancreatic cancer. More importantly, we find that PRMT5 knockdown decreases the phosphorylation level of EGFR at Y1068 and Y1172 and its downstream p-AKT and p-GSK3ß, and then results in down-regulation of ß-catenin. Expectedly, ectopic PRMT5 re-expression also reverses the above changes. It is suggested that PRMT5 promotes EMT probably via EGFR/AKT/ß-catenin pathway. Taken together, our study demonstrates that PRMT5 plays oncogenic roles in the growth of pancreatic cancer cell and provides a potential candidate for pancreatic cancer treatment.


Assuntos
Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pancreáticas
19.
J Cell Biochem ; 121(1): 632-641, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452251

RESUMO

Large intergenic noncoding RNA regulator of reprogramming (Linc-RoR) was first identified as a regulator to increase the emergence of induced pluripotent stem cells through reprogramming differentiated cells and is abnormal expression in a variety of malignant tumors. However, the function of Linc-RoR in pancreatic cancer progression needs further clarification. The data from this study demonstrated that Linc-RoR knockdown suppressed cell proliferative capacity and colony formation, while Linc-RoR overexpression promoted these behaviors. In particular, Linc-RoR overexpression promoted the level of mesenchymal markers, inhibited the expression of epithelial markers, as well as enhanced pancreatic cancer cells migration and invasion, whereas Linc-RoR knockdown inhibited the expression of mesenchymal markers, promoted the expression of epithelial markers, as well as weakened pancreatic cancer cells migration and invasion. Further study revealed that Linc-RoR knockdown brought about a significant fall in YAP phosphorylation and a rise in total YAP, while Linc-RoR overexpression produced the opposite results. Specifically, Linc-RoR promoted YAP in the cytoplasm into the nucleus. Taken together, we conjectured that Linc-RoR promoted proliferation, migration, and invasion of pancreatic cancer cells by activating the Hippo/YAP pathway. YAP might be an underlying target of Linc-RoR and mediate epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC); thus, Linc-RoR might be a very meaningful biomarker for PC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Via de Sinalização Hippo , Humanos , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
20.
Int J Cancer ; 146(10): 2901-2912, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31633800

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer mortality worldwide. Emerging evidence indicates that tumour cells release substantial amounts of RNA into the bloodstream, in which RNA strongly resists RNases and is present at sufficient levels for quantitative analyses. Our study aimed to discover blood-based markers for the early detection of CRC and to ascertain their efficiency in discriminating healthy controls, patients with polyps and adenomas and cancer patients. We first analysed and screened ZFAS1, SNHG11, LINC00909 and LINC00654 in a bioinformatics database and then collected clinical plasma samples for preliminary small-scale analysis and further large-scale verification. We then explored the mechanism of dominant lncRNA SNHG11 expression in CRC by in vitro and in vivo assays. The combination of ZFAS1, SNHG11, LINC00909 and LINC00654 showed high diagnostic performance for CRC (AUC: 0.937), especially early-stage disease (AUC: 0.935). Plasma levels of the four candidate lncRNAs were significantly reduced in postoperative samples compared to preoperative samples. A panel including these four lncRNAs performed well in distinguishing patient groups with different stages of colon disease, and SNHG11 exhibited the greatest diagnostic ability to identify precancerous lesions and early-stage tumour formation. Mechanistically, high SNHG11 expression promotes proliferation and metastasis by targeting the Hippo pathway. Taken together, the data indicate that SNHG11 may be a novel therapeutic target for the treatment of CRC and a potential biomarker for the early detection of CRC.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , RNA Longo não Codificante/sangue , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Adenoma/sangue , Adenoma/diagnóstico , Adenoma/patologia , Animais , Neoplasias Colorretais/patologia , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA