Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 620(7974): 545-551, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224876

RESUMO

Doping of perovskite semiconductors1 and passivation of their grain boundaries2 remain challenging but essential for advancing high-efficiency perovskite solar cells. Particularly, it is crucial to build perovskite/indium tin oxide (ITO) Schottky contact based inverted devices without predepositing a layer of hole-transport material3-5. Here we report a dimethylacridine-based molecular doping process used to construct a well-matched p-perovskite/ITO contact, along with all-round passivation of grain boundaries, achieving a certified power conversion efficiency (PCE) of 25.39%. The molecules are shown to be extruded from the precursor solution to the grain boundaries and the bottom of the film surface in the chlorobenzene-quenched crystallization process, which we call a molecule-extrusion process. The core coordination complex between the deprotonated phosphonic acid group of the molecule and lead polyiodide of perovskite is responsible for both mechanical absorption and electronic charge transfer, and leads to p-type doping of the perovskite film. We created an efficient device with a PCE of 25.86% (reverse scan) and that maintained 96.6% of initial PCE after 1,000 h of light soaking.

2.
Stroke ; 55(5): 1288-1298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511349

RESUMO

BACKGROUND: Lacunes are associated with cognitive impairment. We sought to identify strategic lacune locations associated with mild cognitive impairment (MCI) and subtypes of MCI among older adults, and further to examine the role of white matter hyperintensities and perivascular spaces in the association. METHODS: This population-based cross-sectional study included 1230 dementia-free participants in the brain magnetic resonance imaging substudy (2018-2020) in MIND-China (Multimodal Interventions to Delay Dementia and Disability in Rural China). Lacunes were visually identified in frontal lobe, parieto-occipital lobe, temporal lobe, insula, basal ganglia, thalamus, cerebellum, and brainstem. MCI, amnestic MCI (aMCI), and nonamnestic MCI (naMCI) were defined following the Petersen's criteria. Data were analyzed using logistic regression models. RESULTS: Of the 1230 participants (age, ≥60 years; mean age, 69.40; SD, 4.30 years; 58.5% women), lacunes were detected in 357 people and MCI was defined in 286 individuals, including 243 with aMCI and 43 with naMCI. Lacunes in the supratentorial area, internal capsula, putamen/pallidum, and insula was significantly associated with increased odds ratio of MCI (multivariable-adjusted odds ratio ranged 1.40-3.21; P<0.05) and aMCI (multivariable-adjusted odds ratio ranged 1.46-3.36; P<0.05), whereas lacunes in the infratentorial area and brainstem were significantly associated with naMCI (multivariable-adjusted odds ratio ranged 2.68-3.46; P<0.01). Furthermore, the associations of lacunes in insula and internal capsula with MCI and aMCI, as well as the associations of lacunes in infratentorial area and brainstem with naMCI were present independent of white matter hyperintensities volume and perivascular spaces number. CONCLUSIONS: Lacunes in the internal capsula, putamen/pallidum, insula, and brainstem may represent the strategic lacunes that are independently associated with MCI, aMCI, or naMCI in Chinese older adults. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR1800017758.

3.
Anal Chem ; 96(2): 926-933, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38158373

RESUMO

Nucleolin (NCL) is a multifunctional nuclear protein that plays significant roles in regulating physiological activities of the cells. However, it remains a challenge to monitor the dynamic distribution and expression of nucleolin within living cells during cell stress processes directly. Here, we designed "turn-on" fluorescent nanoprobes composed of specific AS1411 aptamer and nucleus-targeting peptide on gold nanoparticles (AuNPs) to effectively capture and track the NCL distribution and expression during pyroptosis triggered by electrical stimulation (ES). The distribution of nucleolin in the cell membrane and nucleus can be easily observed by simply changing the particle size of the nanoprobes. The present strategy exhibits obvious advantages such as simple operation, low cost, time saving, and suitability for living cell imaging. The ES can induce cancer cell pyroptosis controllably and selectively, with less harm to the viability of normal cells. The palpable cell nuclear stress responses of cancerous cells, including nucleus wrinkling and nucleolus fusion after ES at 1.0 V were obviously observed. Compared with normal cells (MCF-10A), NCL is overexpressed within cancerous cells (MCF-7 cells) using the as-designed nanoprobes, and the ES can effectively inhibit NCL expression within cancerous cells. The developed NCL sensing platform and ES-based methods hold great potential for cellular studies of cancer-related diseases.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Humanos , Nucleolina , Proteínas de Ligação a RNA/metabolismo , Ouro/metabolismo , Piroptose , Corantes , Fosfoproteínas/metabolismo
4.
Eur J Immunol ; 53(1): e2250011, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250416

RESUMO

Gasdermin D (GSDMD) is a classical molecule involved in pyroptosis. It has been reported to be cleaved into N-terminal fragments to form pores in the neutrophil membrane and promote the release of neutrophil extracellular traps (NETs). However, it remains unclear if GSDMD is involved in neutrophil regulation and NET release during ARDS. The role of neutrophil GSDMD in the development of ARDS was investigated in a murine model of ARDS induced by lipopolysaccharide (LPS) using the neutrophil specific GSDMD-deficient mice. The neutrophil GSDMD cleavage and its relationship with NETosis were also explored in ARDS patients. The cleavage of GSDMD in neutrophils from ARDS patients and mice was upregulated. Inhibition of GSDMD by genetic knockout or inhibitors resulted in reduced production of NET both in vivo and in vitro, and attenuation of LPS-induced lung injury. Moreover, in vitro experiments showed that the inhibition of GSDMD attenuated endothelial injury co-cultured with neutrophils from ARDS patients, while extrinsic NETs reversed the protective effect of GSDMD inhibition. Collectively, our data suggest that the neutrophil GSDMD cleavage is crucial in NET release during ARDS. The NET release maintained by cleaved GSDMD in neutrophils may be a key event in the development of ARDS.


Assuntos
Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos , Neutrófilos , Piroptose
5.
Gastrointest Endosc ; 99(4): 577-586.e1, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37989466

RESUMO

BACKGROUND AND AIMS: Post-ERCP pneumobilia is not uncommon; however, studies focusing on the long-term prognosis of patients with post-ERCP pneumobilia are limited. This study aimed to explore long-term prognosis and risk factors associated with post-ERCP pneumobilia in patients with common bile duct stones (CBDSs). METHODS: We conducted a retrospective analysis of 1380 patients who underwent ERCP for CBDSs at our hospital from January 2010 to December 2017. Patients were selected based on inclusion and exclusion criteria and divided into pneumobilia and nonpneumobilia groups, followed by propensity score matching. The matched groups were then compared in terms of incidence rates of both single and multiple recurrences of CBDSs, acute cholangitis, and acute cholecystitis. Multivariate logistic regression analysis was used to explore risk factors associated with pneumobilia. RESULTS: After propensity matching, there was no significant difference in the rate of single recurrence of CBDSs (22.5% vs 30%; P = .446) between the pneumobilia and nonpneumobilia groups. However, the incidences of multiple recurrences of CBDSs (32.5% vs 12.5%; P = .032) and acute cholangitis without stone recurrence (32.5% vs 2.5%; P = <.001) were significantly higher in the pneumobilia group. Based on multivariate logistic regression analysis, in addition to a dilated CBD (diameter of >1 cm) (odds ratio [OR], 2.48; 95% confidence interval [CI], 1.03-3.76; P = .043), endoscopic sphincterotomy with moderate incision (OR, 5.38; 95% CI, 1.14-25.47; P = .034) and with large incision (OR, 8.7; 95% CI, 1.83-41.46; P = .007) were identified as independent risk factors for pneumobilia after initial ERCP. CONCLUSIONS: Patients with post-ERCP pneumobilia have increased risk of multiple recurrences of CBDSs and acute cholangitis without stone recurrence. Independent risk factors for pneumobilia include peripapillary diverticulum, a dilated CBD (>1 cm), and endoscopic sphincterotomy with moderate and large incisions. A normal-sized CBD appears to serve as a secondary barrier against enterobiliary reflux, necessitating further research for confirmation.


Assuntos
Colangite , Cálculos Biliares , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Estudos Retrospectivos , Cálculos Biliares/epidemiologia , Cálculos Biliares/cirurgia , Esfinterotomia Endoscópica/efeitos adversos , Prognóstico , Fatores de Risco , Colangite/epidemiologia , Colangite/etiologia , Colangite/cirurgia , Ducto Colédoco/cirurgia
6.
Pharmacol Res ; 203: 107185, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615875

RESUMO

Microbes, including bacteria, viruses, fungi, and other eukaryotic organisms, are commonly present in multiple organs of the human body and contribute significantly to both physiological and pathological processes. Nowadays, the development of sequencing technology has revealed the presence and composition of the intratumoral microbiota, which includes Fusobacterium, Bifidobacteria, and Bacteroides, and has shed light on the significant involvement in the progression of colorectal cancer (CRC). Here, we summarized the current understanding of the intratumoral microbiota in CRC and outline the potential translational and clinical applications in the diagnosis, prevention, and treatment of CRC. We focused on reviewing the development of microbial therapies targeting the intratumoral microbiota to improve the efficacy and safety of chemotherapy and immunotherapy for CRC and to identify biomarkers for the diagnosis and prognosis of CRC. Finally, we emphasized the obstacles and potential solutions to translating the knowledge of the intratumoral microbiota into clinical practice.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Animais , Microbioma Gastrointestinal , Microbiota , Imunoterapia/métodos
7.
Cereb Cortex ; 33(7): 3664-3673, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35972417

RESUMO

The kidney and brain expressed protein (KIBRA) rs17070145 polymorphism is associated with both structure and activation of the olfactory cortex. However, no studies have thus far examined whether KIBRA can be linked with olfactory function and whether brain structure plays any role in the association. We addressed these questions in a population-based cross-sectional study among rural-dwelling older adults. This study included 1087 participants derived from the Multidomain Interventions to Delay Dementia and Disability in Rural China, who underwent the brain MRI scans in August 2018 to October 2020; of these, 1016 took the 16-item Sniffin' Sticks identification test and 634 (62.40%) were defined with olfactory impairment (OI). Data were analyzed using the voxel-based morphometry analysis and general linear, logistic, and structural equation models. The KIBRA rs17070145 C-allele (CC or CT vs. TT genotype) was significantly associated with greater gray matter volume (GMV) mainly in the bilateral orbitofrontal cortex and left thalamus (P < 0.05) and with the multi-adjusted odds ratio of 0.73 (95% confidence interval 0.56-0.95) for OI. The left thalamic GMV could mediate 8.08% of the KIBRA-olfaction association (P < 0.05). These data suggest that the KIBRA rs17070145 C-allele is associated with a reduced likelihood of OI among older adults, partly mediated through left thalamic GMV.


Assuntos
Substância Cinzenta , Transtornos do Olfato , Idoso , Humanos , Encéfalo , Córtex Cerebral , Estudos Transversais , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem
8.
Surg Endosc ; 38(3): 1289-1295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102397

RESUMO

BACKGROUND AND STUDY AIM: To assess the efficacy and safety of a fibrin sealant for the prevention of leak resulting from mucosal penetration at the esophagus or cardia during a STER procedure to remove gastrointestinal submucosal tumors (SMTs). PATIENTS AND METHODS: Between April 2014 and October 2022, a total of 290 patients with oesophageal or cardiac SMTs underwent STER at our centre. We retrospectively identified patients with oesophageal or cardia SMTs who underwent STER and experienced mucosal penetration of the cardia or oesophagus during the procedure. A total of 31 mucosal penetrations in 30 procedures were included. Of the 31 mucosal penetrations, 12 occurred in the cardia, and the other 19 occurred in the oesophagus. All 31 sites received the fibrin sealant to close the mucosal penetration. Clinical characteristics, procedure-related parameters, detailed data of the mucosal penetrations, and treatment outcomes using the fibrin sealant were reviewed for all 30 patients to assess the efficacy and safety of the fibrin sealant for closure of mucosal penetration at the cardia or oesophagus. RESULTS: For the 31 mucosal penetrations, the mean size was 0.08 ± 0.06 cm2 (range 0.01-0.25 cm2). Mucosal closure using the fibrin sealant was performed successfully in all 31 mucosal penetrations. Of the 31 mucosal penetrations, clips were used in 13 cases. All 30 patients were discharged after a median of 7 days (range 4-20 day) postoperatively. During a mean 62 months (range 6-107 months) follow-up, all 31 mucosal penetrations successfully healed without the occurrence of infection, ulcer, oesophagitis, chest infection or abdominal infection. CONCLUSION: For the closure of mucosal penetration during STER at the cardia or oesophagus, a fibrin sealant is both safe and efficacious. It is necessary to conduct more research on the viability, effectiveness, and safety of using a fibrin sealant to close wider mucosal penetrations.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Neoplasias Gastrointestinais , Neoplasias Gástricas , Humanos , Cárdia/cirurgia , Cárdia/patologia , Adesivo Tecidual de Fibrina/uso terapêutico , Ressecção Endoscópica de Mucosa/métodos , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/patologia , Estudos Retrospectivos , Esôfago/patologia , Neoplasias Gastrointestinais/patologia , Resultado do Tratamento , Mucosa Gástrica/cirurgia , Mucosa Gástrica/patologia , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia
9.
Oral Dis ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813890

RESUMO

OBJECTIVES: Head and neck squamous cell carcinoma present challenges in effective treatment, with 50%-60% of cases exhibiting recurrence or metastasis, often resistant to surgery alone. Immunotherapy, a promising approach, does not guarantee benefits for all patients. Thus, the imperative lies in identifying reliable biomarkers for predicting immunotherapy efficacy. FAM3D, a protein-coding gene known for its potent chemotactic activity in human peripheral blood monocytes and neutrophils, plays a crucial role in regulating tumour immune responses and holds promise as an immune biomarker. MATERIALS AND METHODS: We employed comprehensive database analysis to scrutinise FAM3D, evaluating its gene expression, mutation profiles and prognostic implications in head and neck squamous cell carcinoma, along with its associations with clinical characteristics and immune cell infiltration. Complementary functional experiments were conducted to delve into the potential mechanisms governed by FAM3D. RESULTS: Our findings establish a significant correlation between low FAM3D expression and the invasiveness and metastatic potential of head and neck squamous cell carcinoma. FAM3D likely exerts its influence through the regulation of epithelial-mesenchymal transition. CONCLUSIONS: FAM3D emerges as a valuable biomarker for predicting the responsiveness of patients with head and neck squamous cell carcinoma to immunotherapy, holding substantial clinical diagnostic and therapeutic relevance.

10.
Drug Resist Updat ; 68: 100939, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806005

RESUMO

Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/uso terapêutico , Biomarcadores , Transdução de Sinais , Microambiente Tumoral/genética
11.
Plant Dis ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595062

RESUMO

Rice (Oryza sativa L.) is a crucial staple crop worldwide, and bacterial diseases are among the primary factors affecting rice yield. In late October 2022, bacterial leaf streak disease was observed on the leaves of the rice variety Meixiangzhan 2 across multiple fields (approximately 130 hm2) in Leizhou City, Guangdong Province, China. The incidence rate was up to 30% in each field. Infected rice leaves exhibited distinctive symptoms at the boundary between diseased and healthy tissue, featuring dark green to yellow-brown streaks, while most of the leaf margin exhibited symptoms of either leaf edge or sheath rot. Disease progression from the leaf tip inwards revealed gray-white or dehydrated lesions with a bluish-gray color. Some leaves exhibited wrinkling at the edges, and severe symptoms at the leaf tip resembled those of bacterial leaf blight in rice. Ten leaves were collected from 10 infected rice plants in three distinct fields, and leaf pieces at the border of diseased and healthy areas were surface disinfected with 75% anhydrous ethanol for 60 seconds, rinsed three times with sterile water, and then soaked in sterile water for 8 hours. The obtained bacterial suspension was diluted at a ratio of 1: 106, and 100 µL of the diluted samples were plated on Potato Dextrose Agar (PDA) plates. After incubation at 28°C for 48 hours, the yellow bacterial colonies that appeared, were purified on PDA plates. To confirm the bacterial species, the amplification of genes gyrB, leuS, rpoB, and 16S rDNA was performed on six randomly selected isolates from the three different fields using the primers 27F/1492R, gyrB-F/R, leuS-F/R and rpoB-F/R, as reported by Yu et al (2022), respectively. PCR products were sequenced. All six isolates had identical sequences for all genes sequenced.The gene sequences of 16S rDNA (960 bp), gyrB (953 bp), leuS (733 bp), and rpoB (877 bp) for LZ1, were deposited in the NCBI database under accession numbers PP048830 , PP068625 , PP068626, and PP068627, respectively. These sequences were subsequently compared using BLASTn tool against the NCBI nr/nt database. The 16S rDNA, gyrB, leuS, and rpoB of LZ1 showed similarities of 99.90%, 99.16%, 99.73%, and 99.89%, with the corresponding sequences of P. ananatis TZ39 (GenBank accession numbers MZ800600.1 for 16S rDNA, and CP081342.1 for gyrB, leuS and rpoB ). MLSA analysis using concatenated sequences of gyrB, leuS, and rpoB genes indicated that the isolated strain LZ1 belongs to P. ananatis. In the tillering stage of rice varieties Meixiangzhan 2 and Huahangyuzhan, P. ananatis LZ1 was inoculated at a concentration of 108 CFU/mL using the leaf-cutting method, with sterile water used as a control (Toh et al., 2019). After 14 days of bacterial inoculation, the inoculated leaves gradually became necrotic, changing from light green to brown showing identical symptoms as those in the field, while the control plants remained symptom-free. Subsequent 16S rDNA, gyrB, leuS and rpoB gene sequencing results further confirmed the identity of the pathogen as P. ananatis, thereby fulfilling Koch's postulates. Previous reports have already identified P. ananatis as the pathogen causing rice bacterial leaf streak (Kini et al., 2017; Arayaskul et al., 2019; Yu et al., 2022; Lu et al., 2022; Luna et al., 2023; Yuan et al., 2023). This is the first report of rice bacterial leaf streak caused by P. ananatis in Guangdong Province, China, laying the foundation for future research to establish strategies for the prevention and control of this disease.

12.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791594

RESUMO

In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Oryza , Imunidade Vegetal , Proteínas de Plantas , Cloroplastos/metabolismo , Cloroplastos/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/imunologia , Proteínas de Repetições Ricas em Leucina , Sítios de Ligação , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas NLR/metabolismo , Proteínas NLR/genética , Edição de RNA
13.
J Cell Mol Med ; 27(2): 204-221, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36583248

RESUMO

Necroptosis is a unique programmed death mechanism of necrotic cells. However, its role and specific mechanism in cancer remain unclear, and a systematic pan-cancer analysis of necroptosis is yet to be conducted. Thus, we performed a specific pan-cancer analysis using The Cancer Genome Atlas and Genotype-Tissue Expression databases to analyse necroptosis expression in terms of cancer prognosis, DNA methylation status, tumour mutative burden, microsatellite instability, immune cell infiltration in different types of cancer and molecular mechanisms. For the first time, we explored the correlation between necroptosis and immunotherapy prognosis. Thus, our study provides a relatively comprehensive understanding of the carcinogenicity of necroptosis in different types of cancer. It is suggested that necroptosis can be used to evaluate the sensitivity of different patients to immunotherapy and may become a potential target for tumour immunotherapy.


Assuntos
Necroptose , Neoplasias , Humanos , Necroptose/genética , Neoplasias/genética , Neoplasias/terapia , Metilação de DNA/genética , Bases de Dados Factuais , Imunoterapia , Microambiente Tumoral
14.
Anal Chem ; 95(48): 17716-17725, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38008927

RESUMO

The endoplasmic reticulum (ER) is one of the most important organelles in eukaryotic cells, in which most proteins and lipids are synthesized to regulate complex cellular processes. Generally, the excessive accumulation of unfolded or misfolded proteins can disturb ER homeostasis and induce endoplasmic reticulum stress (ERS). Howbeit, the molecular stress responses within ERS and metastatic behaviors of tumor cells during electrical stimulation (ES) are still poorly investigated and remain a challenge. In this study, by the combined use of fluorescence imaging, ER-targeting plasmonic nanoprobes were developed to trace molecular stress response profiling within the ER during a constant-voltage ES process at ∼1 V based on label-free surface-enhanced Raman spectroscopy (SERS). The excess accumulation of ß-misfolded proteins was found after the ES, leading to breaking of the ER homeostasis and further inducing mitochondrial dysfunction. Notably, the excessive stress of ER under ES can destroy the calcium ion balance and induce significant upregulation of calreticulin expression. Importantly, the content ratio of two kinds of cadherin between E-cadherin and N-cadherin was gradually improved with the voltages boosted. Meanwhile, the epithelial adhesion factor expression was ascended with voltages amplified, leading to inhibiting tumor cell migration at low voltages or death under higher voltages (∼1 V). This study provides cellular insights into the ES approach for tumor therapy and also provides a simple and effective method for detecting molecular stress responses in endoplasmic reticulum stress.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Imagem Óptica
15.
Blood ; 138(9): 806-810, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473230

RESUMO

PD-L1 is a ligand for PD-1, and its expression has been shown to be upregulated in neutrophils harvested from septic patients. However, the effect of PD-L1 on neutrophil survival and sepsis-induced lung injury remains largely unknown. In this study, PD-L1 expression correlated negatively with rates of apoptosis in human neutrophils harvested from patients with sepsis. Coimmunoprecipitation assays on control neutrophils challenged with interferon-γ and LPS showed that PD-L1 complexes with the p85 subunit of phosphatidyl 3-kinase (PI3K) to activate AKT-dependent survival signaling. Conditional CRE/LoxP deletion of neutrophil PD-L1 in vivo further protected against lung injury and reduced neutrophil lung infiltration in a cecal ligation and puncture (CLP) experimental sepsis animal model. Compared with wild-type animals, PD-L1-deficient animals presented lower levels of plasma tumor necrosis factor-α and interleukin-6 (IL-6) and higher levels of IL-10 after CLP, and reduced 7-day mortality in CLP PD-L1-knockout animals. Taken together, our data suggest that increased PD-L1 expression on human neutrophils delays cellular apoptosis by triggering PI3K-dependent AKT phosphorylation to drive lung injury and increase mortality during clinical and experimental sepsis.


Assuntos
Lesão Pulmonar Aguda/imunologia , Apoptose/imunologia , Antígeno B7-H1/imunologia , Neutrófilos/imunologia , Sepse/imunologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/genética , Antígeno B7-H1/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/patologia , Sepse/complicações , Sepse/genética , Sepse/patologia
16.
J Surg Res ; 283: 9-18, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36347171

RESUMO

INTRODUCTION: Nicotinamide mononucleotide (NMN) is a nucleotide that is commonly recognized for its role as an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis with multiple pharmacological effects. The purpose of this study was to evaluate the protective effect of nicotinamide mononucleotide (NMN) against lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS: We investigated the effect of NMN on ALI-induced inflammatory response, oxidative stress, and cell apoptosis. The ALI mouse model was performed by injecting LPS intratracheally at a dose of 10 mg/kg in 50 µL saline. Flow cytometry was used to detect neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and ELISA was used to detect the contents of inflammatory cytokines TNF-α, IL-1ß and IL-6 in BALF. Oxidative stress was evaluated by determining the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in lung tissue. ROS formation was analyzed by immunofluorescence. Western blotting was performed to detect apoptotic levels and p38MAPK/NF-κB phosphorylation levels in lung tissue. RESULTS: In the ALI mouse model, NMN showed a significant therapeutic effect compared to the LPS group. NMN attenuated the pathological damage and cell apoptosis in lung tissue, decreased the levels of TNF-α, IL-1ß, and IL-6 in BALF, and reduced the number of total cells and neutrophils in BALF. In addition, NMN attenuated the LPS-induced elevation of dry-to-wet ratio, MDA content, p38 MAPK and p65 NF-κB phosphorylation levels, and the SOD activity was increased by NMN treatment. CONCLUSIONS: In conclusion, the present study showed that NMN exerted a protective effect on LPS-induced ALI with anti-inflammatory, antioxidative, and antiapoptotic effects.


Assuntos
Lesão Pulmonar Aguda , Mononucleotídeo de Nicotinamida , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos , Pulmão/patologia , NF-kappa B , Mononucleotídeo de Nicotinamida/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno , Superóxido Dismutase/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
17.
J Nanobiotechnology ; 21(1): 423, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964381

RESUMO

Conventional electrospinning produces nanofibers with smooth surfaces that limit biomineralization ability. To overcome this disadvantage, we fabricated a tetramethylpyrazine (TMP)-loaded matrix-mimicking biomineralization in PCL/Gelatin composite electrospun membranes with bubble-shaped nanofibrous structures. PCL/Gelatin membranes (PG), PCL/Gelatin membranes containing biomineralized hydroxyapatite (HA) (PGH), and PCL/Gelatin membranes containing biomineralized HA and loaded TMP (PGHT) were tested. In vitro results indicated that the bubble-shaped nanofibrous surface increased the surface roughness of the nanofibers and promoted mineralization. Furthermore, sustained-release TMP had an excellent drug release efficiency. Initially released vigorously, it reached stabilization at day 7, and the slow-release rate stabilized at 61.0 ± 1.8% at 28 days. All membranes revealed an intact cytoskeleton, cell viability, and superior adhesion and proliferation when stained with Ghost Pen Cyclic Peptide, CCK-8, cell adhesion, and EdU. In PGHT membranes, the osteogenic and vascularized gene expression of BMSCs and human vascular endothelial cells was significantly upregulated compared with that in other groups, indicating the PGHT membranes exhibited an effective vascularization role. Subsequently, the membranes were implanted in a rat cranium defect model for 4 and 8 weeks. Micro-CT and histological analysis results showed that the PGHT membranes had better bone regenerative patterns. Additionally, the levels of CD31 and VEGF significantly increased in the PGHT membrane compared with those in other membranes. Thus, PGHT membranes could accelerate the repair of cranium defects in vivo via HA and TMP synergistic effects.


Assuntos
Nanofibras , Ratos , Humanos , Animais , Nanofibras/química , Gelatina/química , Células Endoteliais , Regeneração Óssea , Durapatita/química , Crânio , Poliésteres/química , Alicerces Teciduais , Proliferação de Células , Engenharia Tecidual/métodos
18.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047628

RESUMO

Although several regulators associated with purple traits in rice have been identified, the genetic basis of the purple sheath remains unclear. In the present study, F2-1 and F2-2 populations were constructed using purple sheath (H93S) and green sheath (R1173 and YHSM), respectively. In order to identify QTL loci in purple sheaths, BSA analyses were performed on the two F2 populations. A crucial QTL for purple sheath was identified, tentatively named qPLSr6, and was located in the 4.61 Mb to 6.03 Mb region of chromosome 6. Combined with expression pattern analysis of candidate genes, LOC_Os06g10350 (OsC1PLSr) was suggested as a candidate gene. The homozygous mutant KO-1 and KO-2 created through CRISPR/Cas9 editing, lost their purple leaf sheath. The RT-PCR revealed that OsC1PLSr, anthocyanin synthase (ANS), diflavonol-4-reductase (DFR), flavanone-3-hydroxylase (F3H), and flavanone-3'-hydroxylase (F3'H) expression levels were dramatically down-regulated in the mutants. The yeast report system indicated that the 145-272 aa region at the C-terminal of OsC1PLSr is a positive transcriptional activation domain. The results indicated that OsC1PLSr synthesized anthocyanins by regulating the expression of ANS, DFR, F3H, and F3'H. This study provides new insights into the genetic basis of the purple sheath.


Assuntos
Flavanonas , Oryza , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Oryza/genética , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Oxirredutases/metabolismo , Oxigenases de Função Mista/genética , Flavanonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003241

RESUMO

The intricate regulatory process governing rice immunity against the blast fungus Magnaporthe oryzae remains a central focus in plant-pathogen interactions. In this study, we investigated the important role of Osa-miR11117, an intergenic microRNA, in regulating rice defense mechanisms. Stem-loop qRT-PCR analysis showed that Osa-miR11117 is responsive to M. oryzae infection, and overexpression of Osa-miR11117 compromises blast resistance. Green fluorescent protein (GFP)-based reporter assay indicated OsPAO4 is one direct target of Osa-miR11117. Furthermore, qRT-PCR analysis showed that OsPAO4 reacts to M. oryzae infection and polyamine (PA) treatment. In addition, OsPAO4 regulates rice resistance to M. oryzae through the regulation of PA accumulation and the expression of the ethylene (ETH) signaling genes. Taken together, these results suggest that Osa-miR11117 is targeting OsPAO4 to regulate blast resistance by adjusting PA metabolism and ETH signaling pathways.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/metabolismo , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Resistência à Doença/genética
20.
Mol Cancer ; 21(1): 190, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192735

RESUMO

Anaplastic thyroid carcinoma (ATC) is an extremely malignant type of endocrine cancer frequently accompanied by extrathyroidal extension or metastasis through mechanisms that remain elusive. We screened for the CREB3 transcription-factor family in a large cohort, consisting of four microarray datasets. This revealed that CREB3L1 was specifically up regulated in ATC tissues and negatively associated with overall survival of patients with thyroid cancer. Consistently, high expression of CREB3L1 was negatively correlated with progression-free survival in an independent cohort. CREB3L1 knockdown dramatically attenuated invasion of ATC cells, whereas overexpression of CREB3L1 facilitated the invasion of papillary thyroid carcinoma (PTC) cells. Loss of CREB3L1 inhibited metastasis and tumor growth of ATC xenografts in zebrafish and nude mouse model. Single-cell RNA-sequencing analysis revealed that CREB3L1 expression gradually increased during the neoplastic progression of a thyroid follicular epithelial cell to an ATC cell, accompanied by the activation of the extracellular matrix (ECM) signaling. CREB3L1 knockdown significantly decreased the expression of collagen subtypes in ATC cells and the fibrillar collagen in xenografts. Due to the loss of CREB3L1, ATC cells were unable to activate alpha-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs). After CREB3L1 knockdown, the presence of CAFs inhibited the growth of ATC spheroids and the metastasis of ATC cells. Further cytokine array screening showed that ATC cells activated α-SMA-positive CAFs through CREB3L1-mediated IL-1α production. Moreover, KPNA2 mediated the nuclear translocation of CREB3L1, thus allowing it to activate downstream ECM signaling. These results demonstrate that CREB3L1 maintains the CAF-like property of ATC cells by activating the ECM signaling, which remodels the tumor stromal microenvironment and drives the malignancy of ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Actinas , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citocinas , Humanos , Camundongos , Proteínas do Tecido Nervoso , RNA , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA