Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8017): 631-635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811739

RESUMO

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

2.
Nature ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401515

RESUMO

Obtaining micron-thick perovskite films of high quality is key to realizing efficient and stable positive (p)-intrinsic (i)-negative (n) perovskite solar cells1,2, but it remains a critical challenge. Here, we report an effective method for producing high-quality, micron-thick formamidinium-based perovskite films by forming coherent grain boundaries, where high-Miller-index-oriented grains grow on the low-Miller-index-oriented grains in a stabilized atmosphere. The resulting micron-thick perovskite films, with enhanced grain boundaries and grains, showed stable material properties and outstanding optoelectronic performances. The small-area solar cells achieved efficiencies of 26.1%. The 1-square-centimeter devices and 5 cm × 5 cm minimodules delivered efficiencies of 24.3% and 21.4%, respectively. The devices processed in a stabilized atmosphere presented a high reproducibility across all four seasons. The encapsulated devices exhibited superior long-term stability under both light and thermal stressors in ambient air.

4.
Nano Lett ; 24(33): 10196-10201, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39132984

RESUMO

Cesium lead iodide light-emitting diodes (LEDs) are attractive for displays due to their Rec. 2020 red standard compliance. However, achieving high current efficiencies (CEs), which is important for displays, is challenging because their emission spectrum is near the tail of the photopic luminosity function. Substituting some iodine with bromine can improve CEs by enlarging the bandgap, but defects easily form in iodine-bromine mixed perovskites. Here, we successfully reduced defect formation by adding organic ammonium salts and zwitterions. The organic ammonium salts do not form low-dimensional perovskites under the hydrogen bonding interaction of zwitterions. Instead, they passivate the cesium vacancy by forming new hydrogen bonds after perovskite crystallization. This approach leads to a red perovskite LED with a high CE of 12.8 cd A-1 and a peak external quantum efficiency of 20.3%, meeting the Rec. 2020 standard. It can be extended to large-area devices (2500 mm2) without a significant efficiency loss.

5.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408023

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

6.
Nature ; 562(7726): 249-253, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305742

RESUMO

Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society-for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1-3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6-9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved-values that approach those of the best-performing organic LEDs.

7.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38953446

RESUMO

Two-dimensional (2D) Sn-based perovskites exhibit significant potential in diverse optoelectronic applications, such as on-chip lasers and photodetectors. Yet, the underlying mechanism behind the frequently observed dual-peak emission in 2D Sn-based perovskites remains a subject of intense debate, and there is a lack of research on the carrier dynamics in these materials. In this study, we investigate these issues in a representative 2D Sn-based perovskite, namely, PEA2SnI4, through temperature-, excitation intensity-, angle-, and time-dependent photoluminescence studies. The results indicate that the high- and low-energy peaks originate from in-face and out-of-face dipole transitions, respectively. In addition, we observe an anomalous increase in the non-radiative recombination rate as temperature decreases. After ruling out enhanced electron-phonon coupling and Auger recombination as potential causes of the anomalous carrier dynamics, we propose that the significantly increased exciton binding energy (Eb) plays a decisive role. The increased Eb arises from enhanced electronic localization, a consequence of weakened lattice distortion at low temperatures, as confirmed by first-principles calculations and temperature-dependent x-ray diffraction measurements. These findings offer valuable insights into the electronic processes in the unique 2D Sn-based perovskites.

8.
Nano Lett ; 23(24): 11860-11865, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085911

RESUMO

The origin of the long lifetime of self-trapped exciton emission in low-dimensional copper halides is currently the subject of extensive debate. In this study, we address this issue in a prototypical zero-dimensional copper halide, Cs2(C18)2Cu2I4-DMSO, through magneto-optical studies at low temperatures down to 0.2 K. Our results exclude spin-forbidden dark states and indirect phonon-assisted recombination as the origin of the long photoluminescence lifetime. Instead, we propose that the minimal Franck-Condon factor of the radiative transition from excited states to the ground state is the decisive factor, based on the transition probability analysis. Our findings offer insights into the electronic processes in low-dimensional copper halides and have the potential to advance the application of these distinctive materials in optoelectronics.

9.
Angew Chem Int Ed Engl ; 63(44): e202411512, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38988004

RESUMO

Overcoming the trade-off between short-circuited current (Jsc) and open-circuited voltage (Voc) is important to achieving high-efficiency organic solar cells (OSCs). Previous works modulated the energy gap between Frenkel local exciton (LE) and charge-transfer (CT) exciton, which served as the driving force of exciton splitting. Differently, our current work focuses on the modulation of LE-CT excitonic coupling (tLE-CT) via a simple but effective strategy that the 2-chlorothiophene (2Cl-Th) solvent utilizes in the treatment of OSC active-layer films. The results of our experimental measurements and theoretical simulations demonstrated that 2Cl-Th solvent initiates tighter intermolecular interactions with non-fullerene acceptor in comparison with that of traditional chlorobenzene solvent, thus suppressing the acceptor's over-aggregation and retarding the acceptor crystallization with reduced trap. Critically, the resulting shorter distances between donor and acceptor molecules in the 2Cl-Th treated blend efficiently strengthen tLE-CT, which not only promotes exciton splitting but also reduces non-radiative recombination. The champion efficiencies of 19.8 % (small-area) with superior operational reliability (T80: 586 hours) and 17.0 % (large-area) were yielded in 2Cl-Th treated cells. This work provided a new insight into modulating the exciton dynamics to overcome the trade-off between Jsc and Voc, which can productively promote the development of the OSC field.

10.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35507685

RESUMO

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

11.
Nat Mater ; 20(1): 10-21, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32929252

RESUMO

Metal halide perovskites have shown promising optoelectronic properties suitable for light-emitting applications. The development of perovskite light-emitting diodes (PeLEDs) has progressed rapidly over the past several years, reaching high external quantum efficiencies of over 20%. In this Review, we focus on the key requirements for high-performance PeLEDs, highlight recent advances on materials and devices, and emphasize the importance of reliable characterization of PeLEDs. We discuss possible approaches to improve the performance of blue and red PeLEDs, increase the long-term operational stability and reduce toxicity hazards. We also provide an overview of the application space made possible by recent developments in high-efficiency PeLEDs.

12.
Nano Lett ; 21(9): 3738-3744, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908790

RESUMO

Three-dimensional (3D) perovskites have been demonstrated as an effective strategy to achieve efficient light-emitting diodes (LEDs) at high brightness. However, most 3D perovskite LEDs still suffer from serious efficiency roll-off. Here, using FAPbI3 as a model system, we find that the main reason for efficiency droop and degradation in 3D perovskite LEDs is defects and the ion migration under electrical stress. By introducing bifunctional-molecule 3-chlorobenzylamine additive into the perovskite precursor solution, the detrimental effects can be significantly suppressed through the growth of high crystalline perovskites and defect passivation. This approach leads to bright near-infrared perovskite LEDs with a peak external quantum efficiency of 16.6%, which sustains 80% of its peak value at a high current density of 460 mA cm-2, corresponding to a high brightness of 300 W sr-1 m-2. Moreover, the device exhibits a record half-lifetime of 49 h under a constant current density of 100 mA cm-2.

13.
Angew Chem Int Ed Engl ; 61(37): e202209337, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35856900

RESUMO

Additive engineering with organic molecules is of critical importance for achieving high-performance perovskite optoelectronic devices. However, experimentally finding suitable additives is costly and time consuming, while conventional machine learning (ML) is difficult to predict accurately due to the limited experimental data available in this relatively new field. Here, we demonstrate a deep learning method that can predict the effectiveness of additives in perovskite light-emitting diodes (PeLEDs) with a high accuracy up to 96 % by using a small dataset of 132 molecules. This model can maximize the information of the molecules and significantly mitigate the duplicated problem that usually happened with previous models in ML for molecular screening. Very high efficiency PeLEDs with a peak external quantum efficiency up to 22.7 % can be achieved by using the predicated additive. Our work opens a new avenue for further boosting the performance of perovskite optoelectronic devices.

14.
Angew Chem Int Ed Engl ; 60(48): 25567-25574, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34545991

RESUMO

Lead halide perovskites always emerge complex interactions among different elemental ions, which lead to multiple intrinsic imperfections. Elemental defects, such as amine, Pb, and I vacancies at A-, B-, and X-sites, are main issues to deteriorate perovskite solar cells (PSCs). Unfortunately, most previous passivators can only temporarily fix partial inactive vacancies as sacrificial agents. Herein, we propose a recovery agent, ferrocene (Fc), which can form a one-dimensional perovskite with adequate steric cavities and suitable dissociation energy to recover all elemental defects back to active light-harvesting perovskites, and regenerate Fc itself meanwhile. Based on this perpetual chain-reaction cycle, corresponding PSCs maintain >10 000-hour lifetime in inert condition and >1000-hour durabilities under various extreme environments, including continuous 85 °C heating, 50 % relative humidity wetting, and 1-sun light soaking.

15.
Small ; 16(30): e2001861, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32573954

RESUMO

Perovskite light-emitting diodes (PeLEDs) have attracted considerable attention because of their potential in display and lighting applications. To promote commercialization of PeLEDs, it is important to improve the external quantum efficiency of the devices, which depends on their internal quantum efficiency (IQE) and light extraction efficiency. Optical simulations have revealed that 20-50% of the light generated in the device will be lost to surface plasmon (SP) modes formed in the metal/dielectric interfaces. Therefore, extracting the optical energy in SP modes to the air will greatly increase the light extraction efficiency of PeLEDs. In addition, the SPs can accelerate radiative recombination of the emitter via near-field effects. Thus, the IQE of a PeLED can also be enhanced by SP manipulation. In this review, first, general concepts of the SPs and how they can enhance the efficiency of LEDs are introduced. Then recent progresses in SP-enhanced emission of perovskite films and LEDs are systematically reviewed. After that, the challenges and opportunities of the SP-enhanced PeLEDs are shown, followed by an outlook of further development of the SPs in perovskite optoelectronic devices.

16.
Nature ; 515(7525): 96-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25363773

RESUMO

Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

17.
Nano Lett ; 19(6): 3953-3960, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31070924

RESUMO

The addition of large hydrophobic cations to lead halide perovskites has significantly enhanced the environmental stability of photovoltaic cells based on these materials. However, the associated formation of two-dimensional structures inside the material can lead to dielectric confinement, higher exciton binding energies, wider bandgaps and limited charge-carrier mobilities. Here we show that such effects are not detrimental to the charge transport for carefully processed films comprising a self-assembled thin layer of quasi-two-dimensional (2D) perovskite interfaced with a 3D MAPbI3 perovskite layer. We apply a combination of time-resolved photoluminescence and photoconductivity spectroscopy to reveal the charge-carrier recombination and transport through the film profile, when either the quasi-2D or the 3D layers are selectively excited. Through modeling of the recorded dynamics, we demonstrate that while the charge-carrier mobility is lower within the quasi-2D region, charge-carrier diffusion to the 3D phase leads to a rapid recovery in photoconductivity even when the quasi-2D region is initially photoexcited. In addition, the blue-shifted emission originating from quasi-2D regions overlaps significantly with the absorption spectrum of the 3D perovskite, allowing for highly effective "heterogeneous photon recycling". We show that this combination fully compensates for the adverse effects of electronic confinement, yielding quasi-2D perovskites with highly efficient charge transporting properties.

18.
Small ; 15(8): e1804947, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30690874

RESUMO

Semiconductor quantum dots (QDs) are among the most promising next-generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution-processed high-performance optoelectronic devices such as light-emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one-step spin-coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size-dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow-bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state-of-the-art LED systems and other optoelectronic devices.

19.
Small ; 15(49): e1904715, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31642190

RESUMO

A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant-free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm-2 , VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL-1 ) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%-50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost-effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.

20.
Nano Lett ; 16(3): 1560-7, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26854533

RESUMO

Owing to direct band gap and strong spin-orbit coupling, monolayer transition-metal dichalcogenides (TMDs) exhibit rich new physics and great applicable potentials. The remarkable valley contrast and light emission promise such two-dimensional (2D) semiconductors a bright future of valleytronics and light-emitting diodes (LEDs). Though the electroluminescence (EL) has been observed in mechanically exfoliated small flakes of TMDs, considering real applications, a strategy that could offer mass-product and high compatibility is greatly demanded. Large-area and high-quality samples prepared by chemical vapor deposition (CVD) are perfect candidates toward such goal. Here, we report the first demonstration of electrically tunable chiral EL from CVD-grown monolayer WS2 by constructing a p-i-n heterojunction. The chirality contrast of the overall EL reaches as high as 81% and can be effectively modulated by forward current. The success of fabricating valley LEDs based on CVD WS2 opens up many opportunities for developing large-scale production of unconventional 2D optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA