Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1055-1074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351372

RESUMO

Activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. However, the molecular basis for HSC activation remains poorly understood. Herein, we demonstrate that primary cilia are present on quiescent HSCs but exhibit a significant loss upon HSC activation which correlates with decreased levels of the ciliary protein intraflagellar transport 88 (IFT88). Ift88-knockout mice are more susceptible to chronic carbon tetrachloride-induced liver fibrosis. Mechanistic studies show that the X-linked inhibitor of apoptosis (XIAP) functions as an E3 ubiquitin ligase for IFT88. Transforming growth factor-ß (TGF-ß), a profibrotic factor, enhances XIAP-mediated ubiquitination of IFT88, promoting its proteasomal degradation. Blocking XIAP-mediated IFT88 degradation ablates TGF-ß-induced HSC activation and liver fibrosis. These findings reveal a previously unrecognized role for ciliary homeostasis in regulating HSC activation and identify the XIAP-IFT88 axis as a potential therapeutic target for liver fibrosis.


Assuntos
Cílios , Cirrose Hepática , Animais , Camundongos , Cílios/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo
2.
Calcif Tissue Int ; 114(2): 182-199, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38055044

RESUMO

In hyperlipidemia-induced osteoporosis, bone marrow mesenchymal stem cells (BMSCs) differentiate into more adipocytes than osteoblasts, leading to decreased bone formation. It is vital to elucidate the effects of hyperlipidemia on bone metabolism and seek new agents that regulate adipocyte-osteoblast lineage allocation. CoQ10, a rate-limiting coenzyme of the mitochondrial respiratory chain, has been reported to decrease oxidative stress and lipid peroxidation by functioning as a mitochondrial antioxidant. However, its effect on hyperlipidemia-induced osteoporosis remains unknown. Here, we analyzed the therapeutic mechanisms of CoQ10 on hyperlipidemia-induced osteoporosis by using high-fat diet (HFD)-treated ApoE-/- mice or oxidized low-density lipoprotein (ox-LDL)-treated BMSCs. The serum lipid levels were elevated and bone formation-related markers were decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, which could be reversed by CoQ10. Additionally, PGC-1α protein expression was decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, accompanied by mitochondrial dysfunction, decreased ATP content and overgeneration of reactive oxygen species (ROS), which could also be antagonized by CoQ10. Furthermore, PGC-1α knockdown in vitro promoted ROS generation, BMSC apoptosis, and adipogenic differentiation while attenuating osteogenic differentiation in BMSCs. Mechanistically, it suggested that the expression of PGC1-α protein was increased with miR-130b-3p inhibitor treatment in osteoporosis under hyperlipidemia conditions to improve mitochondrial function. Collectively, CoQ10 alleviates hyperlipidemia-induced osteoporosis in ApoE-/- mice and regulates adipocyte-osteoblast lineage allocation. The possible underlying mechanism may involve the improvement of mitochondrial function by modulating the miR-130b-3p/PGC-1α pathway.


Assuntos
Hiperlipidemias , MicroRNAs , Osteoporose , Ubiquinona/análogos & derivados , Camundongos , Animais , Hiperlipidemias/complicações , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Osteoporose/prevenção & controle , Osteoporose/tratamento farmacológico , Diferenciação Celular , Mitocôndrias/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico
3.
Langmuir ; 40(19): 10393-10404, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666366

RESUMO

Nitrous oxide (N2O), recognized as a significant greenhouse gas, has received insufficient research attention in the past. In view of their low energy consumption and cost-effectiveness, the application of porous materials in adsorption is increasingly regarded as a potent strategy to reduce N2O pollution. In this study, a series of microporous porous carbons with a preeminent specific surface area (244.54-2018.08 m2 g-1), which are derived from the fast-growing eucalyptus bark, were synthesized by KOH activation at high temperatures. The obtained materials demonstrated a relatively fine N2O capture capability (0.19-0.68 mmol g-1) at normal temperature and pressure. More importantly, the optimal pore size affecting N2O adsorption (0.8 and 1.0 nm) has been detected, which is a meaningful view that has never been put forward in previous studies. The rationality of the N2O adsorption mechanism was also validated by combining the experimental analysis and Grand Canonical Monte Carlo (GCMC) simulation. The calculated results showed that 0.8 and 1.0 nm of the porous carbon were the preferred pore sizes for N2O adsorption, and the interaction force between N2O and the pore wall decreased with the increase of distance. This study provides a significant theoretical basis for the preparation of biomass porous carbon with excellent N2O adsorption performance and practical adsorption application.

4.
Fish Shellfish Immunol ; 154: 109948, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384056

RESUMO

High-resolution and high-throughput genotype-to-phenotype studies in fish are rapidly advancing, driven by innovative technologies that aim to address the challenges of modern breeding models. In recent years, machine vision and deep learning techniques, particularly convolutional neural networks (CNNs), have achieved significant success in image recognition and segmentation. Moreover, qualitative and quantitative analysis of disease resistance has always been a crucial field of research in genetics. This motivation has led us to investigate the potential of large yellow croaker visceral white-nodules disease (VWND) in encoding information on disease resistance for the task of accession classification. In this study, we proposed an image segmentation framework for the feature extraction of the spleen after VWND infection based on machine vision. We utilized deep CNNs and threshold segmentation for automatic feature learning and object segmentation. This approach eliminates subjectivity and enhances work efficiency compared to using hand-crafted features. Additionally, we employed spleen-related traits to conduct genome-wide association analysis (GWAS), which led to the identification of 24 significant SNPs and 10 major quantitative trait loci. The results of function enrichment analysis on candidate genes also indicated potential relationships with immune regulation mechanisms. Furthermore, we explored the use of genomic selection (GS) technology for phenotype prediction of extreme individuals, which further supports the predictability of spleen-related phenotypes for VWND resistance in large yellow croakers. Our findings demonstrate that artificial intelligence (AI)-based phenotyping approaches can deliver state-of-the-art performance for genetics research. We hope this work will provide a paradigm for applying deep learning and machine vision to phenotyping in aquaculture species.

5.
Acta Pharmacol Sin ; 45(5): 926-944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286832

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Loratadina , Loratadina/análogos & derivados , Camundongos Transgênicos , Medula Espinal , Superóxido Dismutase-1 , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Camundongos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Loratadina/farmacologia , Loratadina/uso terapêutico , Humanos , Receptor 5-HT2A de Serotonina/metabolismo , Modelos Animais de Doenças , Masculino , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Camundongos Endogâmicos C57BL
6.
Acta Pharmacol Sin ; 45(10): 2061-2076, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38789495

RESUMO

Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.


Assuntos
Loratadina , Paclitaxel , Doenças do Sistema Nervoso Periférico , Animais , Masculino , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Camundongos , Paclitaxel/efeitos adversos , Loratadina/análogos & derivados , Loratadina/farmacologia , Loratadina/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Antagonistas não Sedativos dos Receptores H1 da Histamina/uso terapêutico , Hipersensibilidade a Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BL
7.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012566

RESUMO

A large series of 2-arylchromen-4-ones containing from 1 to 3 fluorine atoms or a trifluoromethyl group in the structure was synthesized by condensation of fluorinated 2-hydroxyacetophenones with benzaldehydes in an alkaline medium and subsequent oxidative cyclization of the resulting 2'-hydroxychalcones by action of I2 in DMSO. The cytotoxicity of the obtained compounds was studied in glioblastoma cell line, SNB19, and in a monkey-derived normal kidney epithelium cell line, Vero. In addition, antiglycation activity of the obtained compounds was evaluated. The inhibitory activity of some fluorinated 2-arylchromen-4-ones against acetylcholinesterase, butyrylcholinesterase and carboxylesterase as well their primary antioxidant activity in ABTS and FRAP tests were investigated. Screening of the synthesized compounds for their inhibitory activity against influenza A virus A/Puerto Rico/8/34 (H1N1) in the MDCK cell culture revealed that fluorinated compounds 32, 31 and 39 showed manifest antiviral effects (with IS = 57, 38 and 25 correspondingly) that makes this series of new biologically attractive fluorinated heterocycles promising for further development and in-depth study.

8.
Appl Opt ; 63(14): D7-D13, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856327

RESUMO

3D printing technologies have distinguished advantages in manufacturing arbitrary shapes and complex structures that have attracted us to use digital light processing (DLP) technology for specialty silica optical fiber preforms. One of the main tasks is to develop an appropriate recipe for DLP resin that is UV sensitive and loaded with silica nanoparticles. In this work, the effects of a UV absorber in highly silica-loaded resin on DLP printing are experimentally investigated. Spot tests and DLP printing are carried out on resins with varying dosages of a typical UV absorber, Sudan Orange G. Based on the experimental results, the UV absorber can significantly improve the resolution of DLP printed green bodies while requiring a larger exposure dose.

9.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891989

RESUMO

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Assuntos
Afídeos , Genoma Viral , Fases de Leitura Aberta , Filogenia , Animais , Afídeos/virologia , China , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Proteínas Virais/química , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/classificação , RNA Viral/genética
10.
Water Sci Technol ; 89(11): 3021-3034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877628

RESUMO

Drainage modeling that accurately captures urban storm inundation serves as the foundation for flood warning and drainage scheduling. In this paper, we proposed a novel coupling ideology that, by integrating 2D-1D and 1D-2D unidirectional processes, overcomes the drawback of the conventional unidirectional coupling approach that fails to properly represent the rainfall surface catchment dynamics, and provides more coherent hydrological implications compared to the bidirectional coupling concept. This paper first referred to a laboratory experimental case from the literature, applied and analyzed the coupling scheme proposed in this paper and the bidirectional coupling scheme that has been widely studied in recent years, compared the two coupling solutions in terms of the resulting accuracy and applicability, and discussed their respective strengths and weaknesses to validate the reliability of the proposed method. The verified proposed coupling scheme was then applied to the modeling of a real drainage system in a region of Nanjing, China, and the results proved that the coupling mechanism proposed in this study is of practical application value.


Assuntos
Cidades , Inundações , Hidrodinâmica , Modelos Teóricos , China , Esgotos , Drenagem Sanitária
11.
Angew Chem Int Ed Engl ; : e202412983, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180516

RESUMO

Disordered polymer chain entanglements within all-polymer blends limit the formation of optimal donor-acceptor phase separation. Therefore, developing effective methods to regulate morphology evolution is crucial for achieving optimal morphological features in all-polymer organic solar cells (APSCs). In this study, two isomers, 4,5-difluorobenzo-c-1,2,5-thiadiazole (SF-1) and 5,6-difluorobenzo-c-1,2,5-thiadiazole (SF-2), were designed as solid additives based on the widely-used electron-deficient benzothiadiazole unit in nonfullerene acceptors. The incorporation of SF-1 or SF-2 into PM6 : PY-DT blend induces stronger molecular packing via molecular interaction, leading to the formation of continuous interpenetrated networks with suitable phase-separation and vertical distribution. Furthermore, after treatment with SF-1 and SF-2, the exciton diffusion lengths for PY-DT films are extended to over 40 nm, favoring exciton diffusion and charge transport. The asymmetrical SF-2, characterized by an enhanced dipole moment, increases the power conversion efficiency (PCE) of PM6 : PY-DT-based device to 18.83 % due to stronger electrostatic interactions. Moreover, a ternary device strategy boosts the PCE of SF-2-treated APSC to over 19 %. This work not only demonstrates one of the best performances of APSCs but also offers an effective approach to manipulate the morphology of all-polymer blends using rational-designed solid additives.

12.
Microb Ecol ; 85(4): 1308-1322, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35419656

RESUMO

Nonpoint source pollution (NPSP) from human production and life activities causes severe destruction in river basin environments. In this study, three types of sediment samples (A, NPSP tributary samples; B, non-NPSP mainstream samples; C, NPSP mainstream samples) were collected at the estuary of the NPSP tributaries of the Jialing River. High-throughput sequencing of the fungal-specific internal transcribed spacer (ITS) gene region was used to identify fungal taxa. The impact of NPSP on the aquatic environment of the Jialing River was revealed by analysing the community structure, community diversity, and functions of sediment fungi. The results showed that the dominant phylum of sediment fungi was Rozellomycota, followed by Ascomycota and Basidiomycota (relative abundance > 5%). NPSP caused a significant increase in the relative abundances of Exosporium, Phialosimplex, Candida, Inocybe, Tausonia, and Slooffia, and caused a significant decrease in the relative abundances of Cercospora, Cladosporium, Dokmaia, Setophaeosphaeria, Paraphoma, Neosetophoma, Periconia, Plectosphaerella, Claviceps, Botrytis, and Papiliotrema. These fungal communities therefore have a certain indicator role. In addition, NPSP caused significant changes in the physicochemical properties of Jialing River sediments, such as pH and available nitrogen (AN), which significantly increased the species richness of fungi and caused significant changes in the fungal community ß-diversity (P < 0.05). pH, total phosphorus (TP), and AN were the main environmental factors affecting fungal communities in sediments of Jialing River. The functions of sediment fungi mainly involved three types of nutrient metabolism (symbiotrophic, pathotrophic, and saprotrophic) and 75 metabolic circulation pathways. NPSP significantly improved the pentose phosphate pathway, pentose phosphate pathway, and fatty acid beta-oxidation V metabolic circulation pathway functions (P < 0.05) and inhibited the chitin degradation to ethanol, super pathway of heme biosynthesis from glycine, and adenine and adenosine salvage III metabolic circulation pathway functions (P < 0.05). Hence, NPSP causes changes in the community structure and functions of sediment fungi in Jialing River and has adversely affected for the stability of the Jialing River Basin ecosystem.


Assuntos
Ascomicetos , Basidiomycota , Micobioma , Poluição Difusa , Humanos , Rios/microbiologia , Ecossistema , Sedimentos Geológicos/microbiologia , China , Basidiomycota/genética , Ascomicetos/genética
13.
Fish Shellfish Immunol ; 135: 108650, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36858330

RESUMO

Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. However, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatened the healthy and sustainable development of L. crocea industry. Recently, a new C. irritans resistance strain of L. crocea (RS) has been bred using genomic selection technology in our laboratory work. However, the molecular mechanisms for C. irritans resistance of RS have not been fully understood. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that are post-transcriptional regulators, and they play vital roles in immune process of bony fish. Identification of anti-C.irritans relevant miRNA signatures could, therefore, be of tremendous translational value. In the present study, integrated mRNA and miRNA expression analysis was used to explore C. irritans resistance mechanisms of the L. crocea. RS as well as a control strain (CS) of L. crocea, were artificially infected with C. irritans for 100 h, and their gill was collected at 0 h (pre-infection), 24 h (initial infection), and 72 h (peak infection) time points. The total RNA from gill tissues was extracted and used for transcriptome sequencing and small RNA sequencing. After sequencing, 23,172 known mRNAs and 289 known miRNAs were identified. The differential expression was analyzed in these mRNAs and mRNAs and the interactions of miRNA-mRNA pairs were constructed. KEGG pathway enrichment analyses showed that these putative target mRNAs of differentially expressed miRNAs (DEMs) were enriched in different immune-related pathways after C. irritans infection in RS and CS. Among them, necroptosis was the immune-related pathway that was only significantly enriched at two infection stages of RS group (RS-24 h/RS-0h and RS-72 h/RS-0h). Further investigation indicates that necroptosis may be activated by DEMs such as miR-133a-3p, miR-142a-3p and miR-135c, this promotes inflammation responses and pathogen elimination. These DEMs were selected as miRNAs that could potentially regulate the C. irritans resistance of L. crocea. Though these inferences need to be further verified, these findings will be helpful for the research of the molecular mechanism of C. irritans resistance of L. crocea and miRNA-assisted molecular breeding of aquatic animals.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , MicroRNAs , Perciformes , Animais , Cilióforos/fisiologia , RNA Mensageiro/genética , Proteínas de Peixes/genética , MicroRNAs/genética
14.
Acta Pharmacol Sin ; 44(12): 2388-2403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580494

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ß-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either ß-Arrestin2 or ß-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKß/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Vincamina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Receptores Acoplados a Proteínas G , Nervo Isquiático/patologia , Transdução de Sinais , Vincamina/farmacologia , Vincamina/uso terapêutico
15.
Mol Divers ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153637

RESUMO

A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 µM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.

16.
Phytother Res ; 37(10): 4771-4790, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37434441

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease with clinical hallmarks of progressive cognitive impairment and memory loss. Gynostemma pentaphyllum ameliorates cognitive impairment, but the mechanisms remain obscure. Here, we determine the effect of triterpene saponin NPLC0393 from G. pentaphyllum on AD-like pathology in 3×Tg-AD mice and elucidate the underlying mechanisms. NPLC0393 was administered daily in vivo by intraperitoneal injection for 3 months and its amelioration on the cognitive impairment in 3×Tg-AD mice was assessed by new object recognition (NOR), Y-maze, Morris water maze (MWM), and elevated plus-maze (EPM) tests. The mechanisms were investigated by RT-PCR, western blot, and immunohistochemistry techniques, while verified by the 3×Tg-AD mice with protein phosphatase magnesium-dependent 1A (PPM1A) knockdown (KD) through brain-specific injection of adeno-associated virus (AAV)-ePHP-KD-PPM1A. NPLC0393 ameliorated AD-like pathology targeting PPM1A. It repressed microglial NLRP3 inflammasome activation by reducing NLRP3 transcription during priming and promoting PPM1A binding to NLRP3 to disrupt NLRP3 assembly with apoptosis-associated speck-like protein containing a CARD and pro-caspase-1. Moreover, NPLC0393 suppressed tauopathy by inhibiting tau hyperphosphorylation through PPM1A/NLRP3/tau axis and promoting microglial phagocytosis of tau oligomers through PPM1A/nuclear factor-κB/CX3CR1 pathway. PPM1A mediates microglia/neurons crosstalk in AD pathology, whose activation by NPLC0393 represents a promising therapeutic strategy for AD.

17.
Mikrochim Acta ; 190(11): 440, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845542

RESUMO

An electrochemical biosensor is reported for controlling CRISPR/Cas12a activity through the utilization of entropy-driven reactions, alongside the construction of a highly sensitive biosensor for B-type natriuretic peptide (BNP) detection. In the biosensor, entropy-driven reactions are employed to regulate the activity of CRISPR/Cas12a - a gene editing tool - capable of nonspecific cleavage of single-stranded DNA (ssDNA). The biosensor architecture encompasses an electrode that is modified with ssDNA probes designed to hybridize with target BNP aptamers. These aptamers, furnished with labeled ssDNA triggers, facilitate the activation of CRISPR/Cas12a through interaction with its guide RNA. Upon the presence of BNP, it associates with the aptamers, subsequently liberating the triggers that instigate the entropy-driven reactions. As a consequence of these reactions, more stable duplexes emerge between the triggers and guide RNA, thereby activating CRISPR/Cas12a. The activated CRISPR/Cas12a subsequently executes cleavage of ssDNA probes residing on the electrode surface, culminating in the generation of an electrochemical signal directly (the calibration plots of differential pulse voltammetric detection were acquired at a working potential of 0.2 V (vs. ref. electrode)) proportional to the BNP concentration. Validation of the biosensor's performance is undertaken, wherein BNP detection is demonstrated in both buffer and human serum samples. Evident in the findings is the biosensor's discernible sensitivity and specificity for BNP detection, exemplified by a detection limit of 13.53 fM and a lack of interference originating from other cardiac biomarkers, respectively. Furthermore, the biosensor's potential to discriminate between healthy individuals and those afflicted by heart failure, predicated on distinctive BNP levels, is illustrated.


Assuntos
Sistemas CRISPR-Cas , DNA de Cadeia Simples , Humanos , Entropia , Calibragem , Oligonucleotídeos , Biomarcadores , RNA
18.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108108

RESUMO

Hydroxytyrosol, a valuable plant-derived phenolic compound, is increasingly produced from microbial fermentation. However, the promiscuity of the key enzyme HpaBC, the two-component flavin-dependent monooxygenase from Escherichia coli, often leads to low yields. To address this limitation, we developed a novel strategy utilizing microbial consortia catalysis for hydroxytyrosol production. We designed a biosynthetic pathway using tyrosine as the substrate and selected enzymes and overexpressing glutamate dehydrogenase GdhA to realize the cofactor cycling by coupling reactions catalyzed by the transaminase and the reductase. Additionally, the biosynthetic pathway was divided into two parts and performed by separate E. coli strains. Furthermore, we optimized the inoculation time, strain ratio, and pH to maximize the hydroxytyrosol yield. Glycerol and ascorbic acid were added to the co-culture, resulting in a 92% increase in hydroxytyrosol yield. Using this approach, the production of 9.2 mM hydroxytyrosol was achieved from 10 mM tyrosine. This study presents a practical approach for the microbial production of hydroxytyrosol that can be promoted to produce other value-added compounds.


Assuntos
Escherichia coli , Tirosina , Escherichia coli/metabolismo , Tirosina/metabolismo , Consórcios Microbianos , Catálise , Engenharia Metabólica/métodos
19.
J Environ Manage ; 336: 117595, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871452

RESUMO

Bacterial alkaline phosphatase encoded by the phoD gene is essential for phosphorus (P) cycling in ecosystems. Until now, knowledge of the phoD gene diversity in shallow lake sediments is still lacking. In this study, from early to late stage of cyanobacterial blooms, we investigated the dynamic changes of the abundance of phoD gene (hereafter phoD abundance) and phoD-harboring bacterial community composition (hereafter phoD-harboring BCC) in sediments from different ecological regions of Lake Taihu, the third-largest shallow freshwater lake in China, as well as explored their environmental driving factors. Results showed that phoD abundance in the sediments of Lake Taihu showed spatiotemporal heterogeneity. The highest abundance was found in macrophyte-dominated area (mean 3.25*106copies/g DW), where Haliangium and Aeromicrobium were identified as the major contributors. Due to the negative impact of Microcystis species, phoD abundance decreased significantly (by 40.28% on average) during cyanobacterial blooms in all other regions except the estuary area. The phoD abundance in sediment was positively correlated with total organic carbon (TOC) and total nitrogen (TN). However, the relationship between phoD abundance and alkaline phosphatase activity (APA) varied with time, showing positive correlation (R2 = 0.763, P < 0.01) in the early stage of cyanobacterial blooms, but not (R2 = -0.052, P = 0.838) in the later stage. The predominant phoD-harboring genera in sediments were Kribbella, Streptomyces and Lentzea, all of which belong to Actinobacteria. Non-metric multidimensional scaling (NMDS) analysis revealed that the spatial heterogeneity of phoD-harboring BCC in the sediments of Lake Taihu was significantly higher than the temporal heterogeneity. TP and sand were the principle environmental factors affecting the phoD-harboring BCC in the sediments of the estuary area, while DO, pH, organic phosphorus (Po) and diester phosphorus were the key driving factors for other lake regions. We concluded that the C, N, and P cycles in sediments might work in concert. This study extends the understanding of the phoD gene diversity in shallow lake sediments.


Assuntos
Cianobactérias , Lagos , Ecossistema , Fosfatase Alcalina , Eutrofização , Cianobactérias/genética , China , Fósforo/análise , Monitoramento Ambiental/métodos
20.
J Environ Manage ; 335: 117579, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854235

RESUMO

The construction of an efficient monitoring network is critical for the effective and safe management of urban drainage systems. This study developed a re-clustering methodology that incorporates additional perspectives beyond node similarity to improve the traditional clustering process for optimal sensor placement. Instead of targeting event-specific water quality or hydraulic monitoring, the method integrates the water hydraulic and quality characteristics of nodes in response to the demand for routine monitoring. The implementation of this method first applies model simulation to generate the attribute datasets required for clustering analysis, and then re-clusters the initial clustering result according to the constructed re-clustering potential indices. And the information theory-based evaluation metrics were introduced to quantitatively assess the sensor deployment scheme obtained by amalgamating the two clustering results. Two networks with different drainage systems and sizes were chosen as case studies to illustrate the application of the framework. The results demonstrate that the clustering process enables to expand the information contained in the monitoring network, and that the re-clustering strategy can generate more comprehensive and practical solutions upon this basis.


Assuntos
Qualidade da Água , Simulação por Computador , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA