Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
2.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772371

RESUMO

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Centro Germinativo , Imunidade Humoral , Baço , Animais , Masculino , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Gânglios Espinais/metabolismo , Centro Germinativo/imunologia , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Baço/inervação , Baço/imunologia , Feminino
3.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143219

RESUMO

The nucleus of almost all massive galaxies contains a supermassive black hole (BH)1. The feedback from the accretion of these BHs is often considered to have crucial roles in establishing the quiescence of massive galaxies2-14, although some recent studies show that even galaxies hosting the most active BHs do not exhibit a reduction in their molecular gas reservoirs or star formation rates15-17. Therefore, the influence of BHs on galaxy star formation remains highly debated and lacks direct evidence. Here, based on a large sample of nearby galaxies with measurements of masses of both BHs and atomic hydrogen (HI), the main component of the interstellar medium18, we show that the HI gas mass to stellar masses ratio (µHI = MHI/M⋆) is more strongly correlated with BH masses (MBH) than with any other galaxy parameters, including stellar mass, stellar mass surface density and bulge masses. Moreover, once the µHI-MBH correlation is considered, µHI loses dependence on other galactic parameters, demonstrating that MBH serves as the primary driver of µHI. These findings provide important evidence for how the accumulated energy from BH accretion regulates the cool gas content in galaxies, by ejecting interstellar medium gas and/or suppressing gas cooling from the circumgalactic medium.

4.
Am J Hum Genet ; 111(7): 1370-1382, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38917801

RESUMO

Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Humanos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Animais , Camundongos , Feminino , Masculino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Mutação , Adulto , Pessoa de Meia-Idade , Transdução de Sinais , Hemangioma Cavernoso/genética , Hemangioma Cavernoso/patologia , Adolescente , Sequenciamento do Exoma , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética
5.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359296

RESUMO

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Assuntos
Hematopoiese Clonal , Hematopoese , Humanos , Idoso , Hematopoiese Clonal/genética , Hematopoese/genética , Envelhecimento/genética , Mutação , Biomarcadores
6.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
7.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684007

RESUMO

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Assuntos
Anfíbios , Biodiversidade , Filogenia , Animais , Anfíbios/classificação , China , Conservação dos Recursos Naturais
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701417

RESUMO

Transcription factors (TFs) are proteins essential for regulating genetic transcriptions by binding to transcription factor binding sites (TFBSs) in DNA sequences. Accurate predictions of TFBSs can contribute to the design and construction of metabolic regulatory systems based on TFs. Although various deep-learning algorithms have been developed for predicting TFBSs, the prediction performance needs to be improved. This paper proposes a bidirectional encoder representations from transformers (BERT)-based model, called BERT-TFBS, to predict TFBSs solely based on DNA sequences. The model consists of a pre-trained BERT module (DNABERT-2), a convolutional neural network (CNN) module, a convolutional block attention module (CBAM) and an output module. The BERT-TFBS model utilizes the pre-trained DNABERT-2 module to acquire the complex long-term dependencies in DNA sequences through a transfer learning approach, and applies the CNN module and the CBAM to extract high-order local features. The proposed model is trained and tested based on 165 ENCODE ChIP-seq datasets. We conducted experiments with model variants, cross-cell-line validations and comparisons with other models. The experimental results demonstrate the effectiveness and generalization capability of BERT-TFBS in predicting TFBSs, and they show that the proposed model outperforms other deep-learning models. The source code for BERT-TFBS is available at https://github.com/ZX1998-12/BERT-TFBS.


Assuntos
Redes Neurais de Computação , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sítios de Ligação , Algoritmos , Biologia Computacional/métodos , Humanos , Aprendizado Profundo , Ligação Proteica
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38622358

RESUMO

N6-methyladenosine (m6A) is the most abundant mRNA modification within mammalian cells, holding pivotal significance in the regulation of mRNA stability, translation and splicing. Furthermore, it plays a critical role in the regulation of RNA degradation by primarily recruiting the YTHDF2 reader protein. However, the selective regulation of mRNA decay of the m6A-methylated mRNA through YTHDF2 binding is poorly understood. To improve our understanding, we developed m6A-BERT-Deg, a BERT model adapted for predicting YTHDF2-mediated degradation of m6A-methylated mRNAs. We meticulously assembled a high-quality training dataset by integrating multiple data sources for the HeLa cell line. To overcome the limitation of small training samples, we employed a pre-training-fine-tuning strategy by first performing a self-supervised pre-training of the model on 427 760 unlabeled m6A site sequences. The test results demonstrated the importance of this pre-training strategy in enabling m6A-BERT-Deg to outperform other benchmark models. We further conducted a comprehensive model interpretation and revealed a surprising finding that the presence of co-factors in proximity to m6A sites may disrupt YTHDF2-mediated mRNA degradation, subsequently enhancing mRNA stability. We also extended our analyses to the HEK293 cell line, shedding light on the context-dependent YTHDF2-mediated mRNA degradation.


Assuntos
Adenina , Proteínas de Ligação a RNA , Fatores de Transcrição , Animais , Humanos , Células HEK293 , Células HeLa , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
10.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39101501

RESUMO

Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-ligand binding sites. The network was integrated by DenseNet, UNet, and self-attention for extracting features and recovering sample size. We attempted to enlarge the dataset by data augmentation, and the model achieved success rates of 48.4%, 35.5%, and 43.6% at a precision of ≥50% and 52%, 47.6%, and 58.1%. The distance of predicted and real center is ≤4 Å, which is based on SC6K, COACH420, and BU48 validation datasets. The substrate binding sites of Klebsiella variicola acid phosphatase (KvAP) and Bacillus anthracis proline 4-hydroxylase (BaP4H) were predicted using DUnet, showing high competitive performance of 53.8% and 56% of the predicted binding sites that critically affected the catalysis of KvAP and BaP4H. Virtual saturation mutagenesis was applied based on the predicted binding sites of KvAP, and the top-ranked 10 single mutations contributed to stronger enzyme-substrate binding varied while the predicted sites were different. The advantage of DUnet for predicting key residues responsible for enzyme activity further promoted the success rate of virtual mutagenesis. This study highlighted the significance of correctly predicting key binding sites for enzyme engineering.


Assuntos
Aprendizado de Máquina , Sítios de Ligação , Engenharia de Proteínas/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatase Ácida/química , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Especificidade por Substrato , Bacillus anthracis/genética , Bacillus anthracis/enzimologia , Klebsiella/genética , Klebsiella/enzimologia , Ligantes , Ligação Proteica , Modelos Moleculares , Redes Neurais de Computação
11.
Circ Res ; 134(7): 931-949, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547250

RESUMO

The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Homeostase , Receptores de Superfície Celular/metabolismo
12.
Circ Res ; 134(3): 252-265, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166470

RESUMO

BACKGROUND: Intracellular Ca2+ cycling determines myocardial contraction and relaxation in response to physiological demands. SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) is responsible for the sequestration of cytosolic Ca2+ into intracellular stores during cardiac relaxation, and its activity is reversibly inhibited by PLN (phospholamban). However, the regulatory hierarchy of SERCA2a activity remains unclear. METHODS: Cardiomyocyte-specific ZBTB20 knockout mice were generated by crossing ZBTB20flox mice with Myh6-Cre mice. Echocardiography, blood pressure measurements, Langendorff perfusion, histological analysis and immunohistochemistry, quantitative reverse transcription-PCR, Western blot analysis, electrophysiological measurements, and chromatin immunoprecipitation assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: Specific ablation of ZBTB20 in cardiomyocyte led to a significant increase in basal myocardial contractile parameters both in vivo and in vitro, accompanied by an impairment in cardiac reserve and exercise capacity. Moreover, the cardiomyocytes lacking ZBTB20 showed an increase in sarcoplasmic reticular Ca2+ content and exhibited a remarkable enhancement in both SERCA2a activity and electrically stimulated contraction. Mechanistically, PLN expression was dramatically reduced in cardiomyocytes at the mRNA and protein levels by ZBTB20 deletion or silencing, and PLN overexpression could largely restore the basal contractility in ZBTB20-deficient cardiomyocytes. CONCLUSIONS: These data point to ZBTB20 as a fine-tuning modulator of PLN expression and SERCA2a activity, thereby offering new perspective on the regulation of basal contractility in the mammalian heart.


Assuntos
Miocárdio , Retículo Sarcoplasmático , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Mamíferos , Camundongos Knockout , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
13.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
14.
J Neurosci ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060175

RESUMO

Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remains elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in rRNA biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DDX21 in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of rDNA. Using high-throughput screening, we identified the small molecules Batefenterol and Indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.Significance statement Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and long-term memory formation. In this study, we identify the novel role of calmodulin (CaM), a highly conserved Ca2+-binding protein, which is well-known by regulating myriad vital biological processes, in activity-dependent translation by regulating rRNA synthesis in neurons. We find that CaM can shuttle into the nucleolus upon depolarization and modulate the activity-induced de novo rRNA biogenesis, which is associated with ribosome assembly and protein synthesis in neurons. Mechanistically, CaM interacts with DDX21, an RNA helicase directly associated with Pol I subunit, to regulate the transcription of rDNA. Our study demonstrates CaM as a messenger linking neuronal activity to ribosome-dependent protein biosynthesis.

15.
Genet Epidemiol ; 48(2): 74-84, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38282283

RESUMO

This research focuses on the interval estimation of the causal effect of an exposure on an outcome using the summary data-based Mendelian randomization (SMR) method while accounting for the winner's curse caused by the selection of single nucleotide polymorphism instruments. This issue is understudied and is important as the point estimate is biased. Since Fieller's theorem and its variations are not suitable for constructing a confidence interval, we use the box method. This box method is known to be conservative and thus provides a lower bound on the coverage level. To assess the performance of the box method, we use simulation studies and compare it with the support interval we proposed earlier and the Wald interval derived from the SMR method. All three methods are applied to a study of causal genes for Alzheimer's disease. Overall, the box method presents an alternative for constructing interval estimates for a causal effect while addressing the winner's curse issue.


Assuntos
Análise da Randomização Mendeliana , Modelos Genéticos , Humanos , Simulação por Computador , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
16.
Plant J ; 118(3): 682-695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251816

RESUMO

Ginger is cultivated in tropical and subtropical regions and is one of the most crucial spices worldwide owing to its special taste and scent. Here, we present a high-quality genome assembly for 'Small Laiwu Ginger', a famous cultivated ginger in northern China. The ginger genome was phased into two haplotypes, haplotype A (1.55Gb), and haplotype B (1.44Gb). Analysis of Ty1/Copia and Ty3/Gypsy LTR retrotransposon families revealed that both have undergone multiple retrotransposon bursts about 0-1 million years ago. In addition to a recent whole-genome duplication event, there has been a lineage-specific expansion of genes involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, thereby enhancing 6-gingerol biosynthesis. Furthermore, we focused on the biosynthesis of 6-gingerol, the most important gingerol, and screened key transcription factors ZoMYB106 and ZobHLH148 that regulate 6-gingerol synthesis by transcriptomic and metabolomic analysis in the ginger rhizome at four growth stages. The results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter gene assays showed that both ZoMYB106 and ZobHLH148 bind to the promoters of the key rate-limiting enzyme genes ZoCCOMT1 and ZoCCOMT2 in the 6-gingerol synthesis pathway and promote their transcriptional activities. The reference genome, transcriptome, and metabolome data pave the way for further research on the molecular mechanism underlying the biosynthesis of 6-gingerol. Furthermore, it provides precious new resources for the study on the biology and molecular breeding of ginger.


Assuntos
Catecóis , Álcoois Graxos , Genoma de Planta , Zingiber officinale , Zingiber officinale/genética , Zingiber officinale/metabolismo , Álcoois Graxos/metabolismo , Catecóis/metabolismo , Genoma de Planta/genética , Evolução Molecular , Retroelementos/genética , Haplótipos , Rizoma/genética , Rizoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas
17.
Gastroenterology ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117122

RESUMO

BACKGROUND & AIMS: Epidemiologic evidence for dietary influence on colorectal cancer (CRC) risk through the gut microbiome remains limited. METHODS: Leveraging 307 men and 212 women with stool metagenomes and dietary data, we characterized and validated a sex-specific dietary pattern associated with the CRC-related gut microbial signature (CRC Microbial Dietary Score [CMDS]). We evaluated the associations of CMDS with CRC risk according to Fusobacterium nucleatum, pks+Escherichia coli, and enterotoxigenic Bacteroides fragilis (ETBF) status in tumor tissue using Cox proportional hazards regression in the Health Professionals Follow-up Study (1986-2018), Nurses' Health Study (NHS) (1984-2020), and NHS II (1991-2019). RESULTS: The CMDS was characterized by high industrially processed foods and low unprocessed fiber-rich foods intakes. In 259,200 participants, we documented 3,854 incident CRC cases over 6,467,378 person-years of follow-up. CMDS was associated with a higher risk of CRC (Ptrend<0.001), with a multivariable hazard ratio (HRQ5vs.Q1) of 1.25 (95%CI, 1.13-1.39). The association remained after adjusting for previously established dietary patterns, e.g., the Western and prudent diets. Notably, the association was stronger for tumoral F. nucleatum-positive (HRQ5vs.Q1, 2.51; 95%CI, 1.68-3.75; Ptrend<0.001) (Pheterogeneity=0.03, positivity vs. negativity), pks+E. coli-positive (HRQ5vs.Q1, 1.68; 95%CI, 0.84-3.38; Ptrend=0.005) (Pheterogeneity=0.01, positivity vs. negativity), and ETBF-positive CRC (HRQ5vs.Q1, 2.06; 95%CI, 1.10-3.88; Ptrend=0.016) (Pheterogeneity=0.06, positivity vs. negativity), compared with their negative counterparts. CONCLUSIONS: CMDS was associated with increased CRC risk, especially for tumors with detectable F. nucleatum, pks+E. coli, and ETBF in tissue. Our findings support a potential role of the gut microbiome underlying the dietary effects on CRC.

18.
Am J Pathol ; 194(3): 430-446, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38101566

RESUMO

Heterotopic ossification (HO) is the ectopic bone formation in soft tissues. Aside from hereditary HO, traumatic HO is common after orthopedic surgery, combat-related injuries, severe burns, or neurologic injuries. Recently, mammalian target of rapamycin (mTOR) was demonstrated to be involved in the chondrogenic and osteogenic processes of HO formation. However, its upstream signaling mechanism remains unknown. The current study used an Achilles tendon puncture-induced HO model to show that overactive insulin-like growth factor 1 (IGF-1) was involved in the progression of HO in mice. Micro-computed tomography imaging showed that IGF-1 not only accelerated the rate of osteogenesis and increased ectopic bone volume but also induced spontaneous ectopic bone formation in undamaged Achilles tendons. Blocking IGF-1 activity with IGF-1 antibody or IGF-1 receptor inhibitor picropodophyllin significantly inhibited HO formation. Mechanistically, IGF-1/IGF-1 receptor activates phosphatidylinositol 3-kinase (PI3K)/Akt signaling to promote the phosphorylation of mTOR, resulting in the chondrogenic and osteogenic differentiation of tendon-derived stem cells into chondrocytes and osteoblasts in vitro and in vivo. Inhibitors of PI3K (LY294002) and mTOR (rapamycin) both suppressed the IGF-1-stimulated mTOR signal and mitigated the formation of ectopic bones significantly. In conclusion, these results indicate that IGF-1 mediated the progression of traumatic HO through PI3K/Akt/mTOR signaling, and suppressing IGF-1 signaling cascades attenuated HO formation, providing a promising therapeutic strategy targeting HO.


Assuntos
Ossificação Heterotópica , Osteogênese , Animais , Camundongos , Fator de Crescimento Insulin-Like I , Peptídeos Semelhantes à Insulina , Mamíferos , Ossificação Heterotópica/etiologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptor IGF Tipo 1 , Serina-Treonina Quinases TOR , Microtomografia por Raio-X
19.
Mol Psychiatry ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575807

RESUMO

Subtype 5 metabotropic glutamate receptors (mGlu5) are known to play an important role in regulating cognitive, social and valence systems. However, it remains largely unknown at which circuits and neuronal types mGlu5 act to influence these behavioral domains. Altered tissue- or cell-specific expression or function of mGlu5 has been proposed to contribute to the exacerbation of neuropsychiatric disorders. Here, we examined how these receptors regulate the activity of somatostatin-expressing (SST+) neurons, as well as their influence on behavior and brain rhythmic activity. Loss of mGlu5 in SST+ neurons elicited excitatory synaptic dysfunction in a region and sex-specific manner together with a range of emotional imbalances including diminished social novelty preference, reduced anxiety-like behavior and decreased freezing during retrieval of fear memories. In addition, the absence of mGlu5 in SST+ neurons during fear processing impaired theta frequency oscillatory activity in the medial prefrontal cortex and ventral hippocampus. These findings reveal a critical role of mGlu5 in controlling SST+ neurons excitability necessary for regulating negative emotional states.

20.
Mol Psychiatry ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704506

RESUMO

Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA