Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Future Oncol ; 20(12): 717-726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39132937

RESUMO

What is this summary about? This is a plain language summary of a research study called ALPINE. The study involved people who had been diagnosed with, and previously treated at least once for, relapsed or refractory chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL).Lymphocytes help to find and fight off viruses and infections in the body, but when someone has CLL or SLL, the body creates abnormal lymphocytes, leaving the patient with a weakened immune system and susceptible to illness. In CLL, these lymphocytes are in the bone marrow and bloodstream, whereas for SLL, they are mostly found in the lymph nodes, such as those in the neck.How was the research done? The ALPINE study was designed to directly compare the cancer-fighting effects and side effects of zanubrutinib and ibrutinib as treatment for patients with relapsed or refractory CLL/SLL.What were the results? After 30 months, zanubrutinib was more effective than ibrutinib at reducing and keeping the cancer from coming back. Clinical Trial Registration: NCT03734016 (ClinicalTrials.gov).


Assuntos
Adenina , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Piperidinas , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Humanos , Piperidinas/uso terapêutico , Adenina/análogos & derivados , Adenina/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirazóis/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Antineoplásicos/uso terapêutico , Pirazinas/uso terapêutico , Tiazóis/uso terapêutico , Resultado do Tratamento
2.
EBioMedicine ; 104: 105167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805852

RESUMO

BACKGROUND: Tumour-infiltrating lymphocytes (TILs) are crucial for effective immune checkpoint blockade (ICB) therapy in solid tumours. However, ∼70% of these tumours exhibit poor lymphocyte infiltration, rendering ICB therapies less effective. METHODS: We developed a bioinformatics pipeline integrating multiple previously unconsidered factors or datasets, including tumour cell immune-related pathways, copy number variation (CNV), and single tumour cell sequencing data, as well as tumour mRNA-seq data and patient survival data, to identify targets that can potentially improve T cell infiltration and enhance ICB efficacy. Furthermore, we conducted wet-lab experiments and successfully validated one of the top-identified genes. FINDINGS: We applied this pipeline in solid tumours of the Cancer Genome Atlas (TCGA) and identified a set of genes in 18 cancer types that might potentially improve lymphocyte infiltration and ICB efficacy, providing a valuable drug target resource to be further explored. Importantly, we experimentally validated SUN1, which had not been linked to T cell infiltration and ICB therapy previously, but was one of the top-identified gene targets among 3 cancer types based on the pipeline, in a mouse colon cancer syngeneic model. We showed that Sun1 KO could significantly enhance antigen presentation, increase T-cell infiltration, and improve anti-PD1 treatment efficacy. Moreover, with a single-cell multiome analysis, we identified subgene regulatory networks (sub-GRNs) showing Stat proteins play important roles in enhancing the immune-related pathways in Sun1-KO cancer cells. INTERPRETATION: This study not only established a computational pipeline for discovering new gene targets and signalling pathways in cancer cells that block T-cell infiltration, but also provided a gene target pool for further exploration in improving lymphocyte infiltration and ICB efficacy in solid tumours. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Assuntos
Biologia Computacional , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Neoplasias , Transdução de Sinais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Humanos , Biologia Computacional/métodos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças
3.
Science ; : eadq0876, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116258

RESUMO

Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis via rolling circle reverse transcription of a non-coding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. Remarkably, this DNA product constitutes a protein-coding, nearly endless ORF (neo) gene whose expression leads to potent cell growth arrest, thereby restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.

4.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766058

RESUMO

Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA). Unbiased profiling of RT-associated RNA and DNA ligands in DRT2-expressing cells revealed that reverse transcription generates concatenated cDNA repeats through programmed template jumping on the ncRNA. The presence of phage then triggers second-strand cDNA synthesis, leading to the production of long double-stranded DNA. Remarkably, this DNA product is efficiently transcribed, generating messenger RNAs that encode a stop codon-less, never-ending ORF (neo) whose translation causes potent growth arrest. Phylogenetic analyses and screening of diverse DRT2 homologs further revealed broad conservation of rolling-circle reverse transcription and Neo protein function. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA