Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628595

RESUMO

Protoporphyrinogen IX (Protogen IX) oxidase (PPO) catalyzes the oxidation of Protogen IX to Proto IX. PPO is also the target site for diphenyl ether-type herbicides. In plants, there are two PPO encoding genes, PPO1 and PPO2. To date, no PPO gene or mutant has been characterized in monocotyledonous plants. In this study, we isolated a spotted and rolled leaf (sprl1) mutant in rice (Oryza sativa). The spotted leaf phenotype was sensitive to high light intensity and low temperature, but the rolled leaf phenotype was insensitive. We confirmed that the sprl1 phenotypes were caused by a single nucleotide substitution in the OsPPO1 (LOC_Os01g18320) gene. This gene is constitutively expressed, and its encoded product is localized to the chloroplast. The sprl1 mutant accumulated excess Proto(gen) IX and reactive oxygen species (ROS), resulting in necrotic lesions. The expressions of 26 genes associated with tetrapyrrole biosynthesis, photosynthesis, ROS accumulation, and rolled leaf were significantly altered in sprl1, demonstrating that these expression changes were coincident with the mutant phenotypes. Importantly, OsPPO1-overexpression transgenic plants were resistant to the herbicides oxyfluorfen and acifluorfen under field conditions, while having no distinct influence on plant growth and grain yield. These finding indicate that the OsPPO1 gene has the potential to engineer herbicide resistance in rice.


Assuntos
Herbicidas , Oryza , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Espécies Reativas de Oxigênio
2.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375756

RESUMO

The iron-sulfur subunit (SDH2) of succinate dehydrogenase plays a key role in electron transport in plant mitochondria. However, it is yet unknown whether SDH2 genes are involved in leaf senescence and yield formation. In this study, we isolated a late premature senescence mutant, lps1, in rice (Oryza sativa). The mutant leaves exhibited brown spots at late tillering stage and wilted at the late grain-filling stage and mature stage. In its premature senescence leaves, photosynthetic pigment contents and net photosynthetic rate were reduced; chloroplasts and mitochondria were degraded. Meanwhile, lps1 displayed small panicles, low seed-setting rate and dramatically reduced grain yield. Gene cloning and complementation analysis suggested that the causal gene for the mutant phenotype was OsSDH2-1 (LOC_Os08g02640), in which single nucleotide mutation resulted in an amino acid substitution in the encoded protein. OsSDH2-1 gene was expressed in all organs tested, with higher expression in leaves, root tips, ovary and anthers. OsSDH2-1 protein was targeted to mitochondria. Furthermore, reactive oxygen species (ROS), mainly H2O2, was excessively accumulated in leaves and young panicles of lps1, which could cause premature leaf senescence and affect panicle development and pollen function. Taken together, OsSDH2-1 plays a crucial role in leaf senescence and yield formation in rice.


Assuntos
Envelhecimento/genética , Proteínas Ferro-Enxofre/genética , Oryza/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Subunidades Proteicas/genética , Succinato Desidrogenase/genética , Cloroplastos/ultraestrutura , Grão Comestível , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Ferro-Enxofre/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Subunidades Proteicas/metabolismo , Característica Quantitativa Herdável , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Succinato Desidrogenase/metabolismo
3.
Plant Physiol ; 164(2): 1077-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335508

RESUMO

MicroRNAs (miRNAs) are indispensable regulators for development and defense in eukaryotes. However, the miRNA species have not been explored for rice (Oryza sativa) immunity against the blast fungus Magnaporthe oryzae, the most devastating fungal pathogen in rice production worldwide. Here, by deep sequencing small RNA libraries from susceptible and resistant lines in normal conditions and upon M. oryzae infection, we identified a group of known rice miRNAs that were differentially expressed upon M. oryzae infection. They were further classified into three classes based on their expression patterns in the susceptible japonica line Lijiangxin Tuan Hegu and in the resistant line International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake that contains a single resistance gene locus, Pyricularia-Kanto 51-m (Pikm), within the Lijiangxin Tuan Hegu background. RNA-blot assay of nine of them confirmed sequencing results. Real-time reverse transcription-polymerase chain reaction assay showed that the expression of some target genes was negatively correlated with the expression of miRNAs. Moreover, transgenic rice plants overexpressing miR160a and miR398b displayed enhanced resistance to M. oryzae, as demonstrated by decreased fungal growth, increased hydrogen peroxide accumulation at the infection site, and up-regulated expression of defense-related genes. Taken together, our data indicate that miRNAs are involved in rice immunity against M. oryzae and that overexpression of miR160a or miR398b can enhance rice resistance to the disease.


Assuntos
Magnaporthe/fisiologia , MicroRNAs/metabolismo , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Oryza/citologia , Oryza/genética , Doenças das Plantas/imunologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética
4.
Int J Mol Sci ; 14(10): 20204-19, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24152437

RESUMO

The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26), dipeptidyl peptidase IV (DPPIV, EC3.4.14.5), oligopeptidase B (OPB, EC3.4.21.83), and acylaminoacyl peptidase (ACPH, EC3.4.19.1). POP is found in human and rat, and plays important roles in multiple biological processes, such as protein secretion, maturation and degradation of peptide hormones, and neuropathies, signal transduction and memory and learning. However, the function of POP is unclear in plants. In order to study POP function in plants, we cloned the cDNA of the OsPOP5 gene from rice by nested-PCR. Sequence analysis showed that the cDNA encodes a protein of 596 amino acid residues with Mw ≈ 67.29 kD. In order to analyze the protein function under different abiotic stresses, OsPOP5 was expressed in Escherichia coli. OsPOP5 protein enhanced the tolerance of E. coli to high salinity, high temperature and simulated drought. The results indicate that OsPOP5 is a stress-related gene in rice and it may play an important role in plant tolerance to abiotic stress.


Assuntos
Escherichia coli/genética , Genes de Plantas/genética , Oryza/genética , Serina Endopeptidases/genética , Estresse Fisiológico/genética , Sequência de Bases , Dados de Sequência Molecular , Oryza/enzimologia , Filogenia , Prolil Oligopeptidases
5.
Yi Chuan ; 28(3): 369-74, 2006 Mar.
Artigo em Zh | MEDLINE | ID: mdl-16551608

RESUMO

DREB transcription factor is a dehydration responsive element (DRE) binding protein. It can specifically interact with the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element contained in the promoter region of many stress-inducible genes, and can therefore control the expression of many stress-inducible genes in plant and increase strong tolerance to drought, low temperature and high salt. In this paper we described the relation between DREB transcription factor and DRE/CRT cis-acting element, the functional and structural character, and expression and regulation of DREB. We also briefly introduced the progress of research on DREB gene cloning and identification. DREB transcription factor plays an important role in the expression of many stress-inducible genes in plant, so it thus shows a very broad application future in aspect of increasing strong tolerance to stress. At the same time, we described the DREB complexity in signal transduction and the mechanism for action and expression of gene.


Assuntos
Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética
6.
Yi Chuan ; 27(6): 1013-9, 2005 Nov.
Artigo em Zh | MEDLINE | ID: mdl-16378955

RESUMO

The granule-bound starch synthase(GBSS) is encoded by the rice Wx gene, which is the major gene for control of amylase synthesis of. This paper briefly introduced the progress in regulation of rice Wx gene expression at transcriptional level and post-transcriptional level. At the same time the influence of transgene, genetic background and temperature condition on Wx gene expression in rice was discussed. Finally some urgent questions were suggested for the further study on regulation of rice Wx gene expression.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Amilose/metabolismo , Inativação Gênica , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Temperatura , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA