Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0089024, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940564

RESUMO

Biological valorization of lignin, the second most abundant biopolymer on Earth, is an indispensable sector to build a circular economy and net-zero future. However, lignin is recalcitrant to bioupcycling, demanding innovative solutions. We report here the biological valorization of lignin-derived aromatic carbon to value-added chemicals without requesting extra organic carbon and freshwater via reprogramming the marine Roseobacter clade bacterium Roseovarius nubinhibens. We discovered the unusual advantages of this strain for the oxidation of lignin monomers and implemented a CRISPR interference (CRISPRi) system with the lacI-Ptrc inducible module, nuclease-deactivated Cas9, and programmable gRNAs. This is the first CRISPR-based regulatory system in R. nubinhibens, enabling precise and efficient repression of genes of interest. By deploying the customized CRISPRi, we reprogrammed the carbon flux from a lignin monomer, 4-hydroxybenzoate, to achieve the maximum production of protocatechuate, a pharmaceutical compound with antibacterial, antioxidant, and anticancer properties, with minimal carbon to maintain cell growth and drive biocatalysis. As a result, we achieved a 4.89-fold increase in protocatechuate yield with a dual-targeting CRISPRi system, and the system was demonstrated with real seawater. Our work underscores the power of CRISPRi in exploiting novel microbial chassis and will accelerate the development of marine synthetic biology. Meanwhile, the introduction of a new-to-the-field lineage of marine bacteria unveils the potential of blue biotechnology leveraging resources from the ocean.IMPORTANCEOne often overlooked sector in carbon-conservative biotechnology is the water resource that sustains these enabling technologies. Similar to the "food-versus-fuel" debate, the competition of freshwater between human demands and bioproduction is another controversial issue, especially under global water scarcity. Here, we bring a new-to-the-field lineage of marine bacteria with unusual advantages to the stage of engineering biology for simultaneous carbon and water conservation. We report the valorization of lignin monomers to pharmaceutical compounds without requesting extra organic substrate (e.g., glucose) or freshwater by reprogramming the marine bacterium Roseovarius nubinhibens with a multiplex CRISPR interference system. Beyond the blue lignin valorization, we present a proof-of-principle of leveraging marine bacteria and engineering biology for a sustainable future.

2.
J Infect Dis ; 228(3): 261-269, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37005365

RESUMO

BACKGROUND: China has been using inactivated coronavirus disease 2019 (COVID-19) vaccines as primary series and booster doses to protect the population from severe to fatal COVID-19. We evaluated primary and booster vaccine effectiveness (VE) against Omicron BA.2 infection outcomes. METHODS: This was a 13-province retrospective cohort study of quarantined close contacts of BA.2-infected individuals. Outcomes were BA.2 infection, COVID-19 pneumonia or worse, and severe/critical COVID-19. Absolute VE was estimated by comparison with an unvaccinated group. RESULTS: There were 289 427 close contacts ≥3 years old exposed to Omicron BA.2 cases; 31 831 turned nucleic acid amplification test-positive during quarantine, 97.2% with mild or asymptomatic infection, 2.6% with COVID-19 pneumonia, and 0.15% with severe/critical COVID-19. None died. Adjusted VE (aVE) against any infection was 17% for primary series and 22% when boosted. Primary series aVE in adults >18 years was 66% against COVID-19 pneumonia or worse and 91% against severe/critical COVID-19. Booster dose aVE was 74% against pneumonia or worse, and 93% against severe/critical COVID-19. CONCLUSIONS: Inactivated COVID-19 vaccines provided modest protection from infection, very good protection against pneumonia, and excellent protection against severe/critical COVID-19. Booster doses are necessary to provide strongest protection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Pré-Escolar , COVID-19/prevenção & controle , Estudos Retrospectivos , China/epidemiologia , Infecções Assintomáticas
3.
Metab Eng ; 75: 91-99, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403709

RESUMO

Cyanobacteria can directly convert carbon dioxide (CO2) at the atmospheric level to biofuels, value-added chemicals and food products, making them ideal candidates to alleviate global climate change. Despite decades-long pioneering successes, the development of genome-editing tools, especially the CRISPR-Cas-based approaches, seems to lag behind other microbial chassis, slowing down the innovations of cyanobacteria. Here, we adapted and tailored base editing for cyanobacteria based on the CRISPR-Cas system and deamination. We achieved precise and efficient genome editing at a single-nucleotide resolution and demonstrated multiplex base editing in the model cyanobacterium Synechococcus elongatus. By using the base-editing tool, we successfully manipulated the glycogen metabolic pathway via the introduction of premature STOP codons in the relevant genes, building engineered strains with elevated potentials to produce chemicals and food from CO2. We present here the first report of base editing in the phylum of cyanobacteria, and a paradigm for applying CRISPR-Cas systems in bacteria. We believe that our work will accelerate the metabolic engineering and synthetic biology of cyanobacteria and drive more innovations to alleviate global climate change.


Assuntos
Edição de Genes , Synechococcus , Dióxido de Carbono/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Redes e Vias Metabólicas , Sistemas CRISPR-Cas , Engenharia Metabólica
4.
Appl Environ Microbiol ; 89(4): e0005323, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975789

RESUMO

The evolution and dissemination of antibiotic resistance genes (ARGs) are prompting severe health and environmental issues. While environmental processes, e.g., biological wastewater treatment, are key barriers to prevent the spread of ARGs, they are often sources of ARGs at the same time, requiring upgraded biotechnology. Here, we present VADER, a synthetic biology system for the degradation of ARGs based on CRISPR-Cas immunity, an archaeal and bacterial immune system for eliminating invading foreign DNAs, to be implemented for wastewater treatment processes. Navigated by programmable guide RNAs, VADER targets and degrades ARGs depending on their DNA sequences, and by employing an artificial conjugation machinery, IncP, it can be delivered via conjugation. The system was evaluated by degrading plasmid-borne ARGs in Escherichia coli and further demonstrated via the elimination of ARGs on the environmentally relevant RP4 plasmid in Pseudomonas aeruginosa. Next, a prototype conjugation reactor at a 10-mL scale was devised, and 100% of the target ARG was eliminated in the transconjugants receiving VADER, giving a proof of principle for the implementation of VADER in bioprocesses. By generating a nexus of synthetic biology and environmental biotechnology, we believe that our work is not only an enterprise for tackling ARG problems but also a potential solution for managing undesired genetic materials in general in the future. IMPORTANCE Antibiotic resistance has been causing severe health problems and has led to millions of deaths in recent years. Environmental processes, especially those of the wastewater treatment sector, are an important barrier to the spread of antibiotic resistance from the pharmaceutical industry, hospitals, or civil sewage. However, they have been identified as a nonnegligible source of antibiotic resistance at the same time, as antibiotic resistance with its main cause, antibiotic resistance genes (ARGs), may accumulate in biological treatment units. Here, we transplanted the CRISPR-Cas system, an immune system via programmable DNA cleavage, to tackle the antibiotic resistance problem raised in wastewater treatment processes, and we propose a new sector specialized in ARG removal with a conjugation reactor to implement the CRISPR-Cas system. Our study provides a new angle for resolving public health issues via the implementation of synthetic biology in environmental contexts at the process level.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Sistemas CRISPR-Cas , Resistência Microbiana a Medicamentos/genética , Águas Residuárias , Escherichia coli/genética
5.
FEMS Yeast Res ; 22(1)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35640892

RESUMO

Sugar metabolism by Saccharomyces cerevisiae produces ample amounts of CO2 under both aerobic and anaerobic conditions. High solubility of CO2 in fermentation media, contributing to enjoyable sensory properties of sparkling wine and beers by S. cerevisiae, might affect yeast metabolism. To elucidate the overlooked effects of CO2 on yeast metabolism, we examined glucose fermentation by S. cerevisiae under CO2 as compared to N2 and O2 limited conditions. While both CO2 and N2 conditions are considered anaerobic, less glycerol and acetate but more ethanol were produced under CO2 condition. Transcriptomic analysis revealed that significantly decreased mRNA levels of GPP1 coding for glycerol-3-phosphate phosphatase in glycerol synthesis explained the reduced glycerol production under CO2 condition. Besides, transcriptional regulations in signal transduction, carbohydrate synthesis, heme synthesis, membrane and cell wall metabolism, and respiration were detected in response to CO2. Interestingly, signal transduction was uniquely regulated under CO2 condition, where upregulated genes (STE3, MSB2, WSC3, STE12, and TEC1) in the signal sensors and transcriptional factors suggested that MAPK signaling pathway plays a critical role in CO2 sensing and CO2-induced metabolisms in yeast. Our study identifies CO2 as an external stimulus for modulating metabolic activities in yeast and a transcriptional effector for diverse applications.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Dióxido de Carbono/metabolismo , Fermentação , Glicerol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vinho/análise
6.
Microb Cell Fact ; 21(1): 31, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248031

RESUMO

BACKGROUND: Converting carbon dioxide (CO2) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO2 as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO2 and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyanobacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed to fill the gap at omics level. RESULTS: We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glucose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phosphate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related genes in strain YQ3-xyl with utilization of xylose. CONCLUSIONS: Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable bioproduction systems based on this potential chassis.


Assuntos
Synechococcus , Transcriptoma , Engenharia Metabólica , Metabolômica , Fotossíntese , Synechococcus/genética , Synechococcus/metabolismo
7.
Environ Sci Technol ; 54(6): 3386-3394, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31961660

RESUMO

Although the fate of nanoplastics (<100 nm) in freshwater systems is increasingly well studied, much less is known about its potential threats to cyanobacterial blooms, the ultimate phenomenon of eutrophication occurrence worldwide. Previous studies have evaluated the consequences of nanoplastics increasing the membrane permeability of microbes, however, there is no direct evidence for interactions between nanoplastics and microcystin; intracellular hepatotoxins are produced by some genera of cyanobacteria. Here, we show that the amino-modified polystyrene nanoplastics (PS-NH2) promote microcystin synthesis and release from Microcystis aeruginosa, a dominant species causing cyanobacterial blooms, even without the change of coloration. We demonstrate that PS-NH2 inhibits photosystem II efficiency, reduces organic substance synthesis, and induces oxidative stress, enhancing the synthesis of microcystin. Furthermore, PS-NH2 promotes the extracellular release of microcystin from M. aeruginosa via transporter protein upregulation and impaired cell membrane integrity. Our findings propose that the presence of nanoplastics in freshwater ecosystems might enhance the threat of eutrophication to aquatic ecology and human health.


Assuntos
Cianobactérias , Microcystis , Ecossistema , Eutrofização , Microcistinas
8.
Bioprocess Biosyst Eng ; 41(3): 443-447, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29209846

RESUMO

One barrier inhibiting further progress in biofuel production is the toxicity of biofuels towards their producers. It is promising to apply gene-based intracellular techniques to engineer better strains with higher organic solvent tolerance. These methods are, however, complex. In the present study, we developed a simple, manageable, and commercial extracellular prototypal strategy to alleviate n-butanol (n-BuOH) stress on Escherichia coli via a micelle-mediated transport disturbance. When the concentration of sodium dodecyl sulfate, a typical anionic surfactant, is high enough to form micelles, n-BuOH will be trapped into/onto the micelles, and the negative charge prevents the n-BuOH from approaching the cells. Our study provides an extracellular strategy to relieve the stress from n-BuOH, and it also exhibits a new angle to advance microbial factories through extracellular routines.


Assuntos
1-Butanol/farmacologia , Escherichia coli/metabolismo , Micelas , Estresse Fisiológico/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos
9.
J Environ Sci (China) ; 67: 154-160, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778148

RESUMO

Inexact mechanism of aerobic granulation still impedes optimization and application of aerobic granules. In this study, the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory and physicochemical properties were combined to assess the aggregation ability of sludge during aerobic granulation process qualitatively and quantitatively. Results show that relative hydrophobicity of sludge and polysaccharide content of extracellular polymeric substances (EPS) increased, while electronegativity of sludge decreased during acclimation phase. After 20days' acclimation, small granules began to form due to high aggregation ability of sludge. Since then, coexisted flocs and granules possessed distinct physicochemical properties during granulation and maturation phase. The relative hydrophobicity decreased while electronegativity increased for flocs, whereas that for granules presented reverse trend. Through analyzing the interaction energy using the XDLVO theory, small granules tended to self-grow rather than self-aggregate or attach of flocs due to poor aggregation ability between flocs and granules during the granulation phase. Besides, remaining flocs were unlikely to self-aggregate owing to poor aggregation ability, low hydrophobicity and high electronegativity.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Reatores Biológicos , Floculação , Polímeros/química , Polissacarídeos/química
10.
Biotechnol Bioeng ; 113(10): 2149-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27003667

RESUMO

Rapid advances in the capabilities of reading and writing DNA along with increasing understanding of microbial metabolism at the systems-level have paved an incredible path for metabolic engineering. Despite these advances, post-translational tools facilitating functional expression of heterologous enzymes in model hosts have not been developed well. Some bacterial enzymes, such as Escherichia coli xylose isomerase (XI) and arabinose isomerase (AI) which are essential for utilizing cellulosic sugars, cannot be functionally expressed in Saccharomyces cerevisiae. We hypothesized and demonstrated that the mismatching of the HSP60 chaperone systems between bacterial and eukaryotic cells might be the reason these bacterial enzymes cannot be functionally expressed in yeast. The results showed that the co-expression of E. coli GroE can facilitate the functional expression of E. coli XI and AI, as well as the Agrobacterium tumefaciens D-psicose epimerase in S. cerevisiae. The co-expression of bacterial chaperonins in S. cerevisiae is a promising post-translational strategy for the functional expression of bacterial enzymes in yeast. Biotechnol. Bioeng. 2016;113: 2149-2155. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Chaperonina 60/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
11.
Med Sci Monit ; 22: 3514-3522, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-27694792

RESUMO

BACKGROUND The aim of this study was to investigate the possible associations of miRNA-27a and Leptin polymorphisms with the risk of recurrent spontaneous abortion (RSA). MATERIAL AND METHODS Between May 2013 and April 2015 at Shenzhen Longhua New District Central Hospital, we randomly recruited 138 RSA patients as the case group and another 142 normal pregnancy women as the control group. We used denaturing high-performance liquid chromatography (DHPLC) to determine the genotypes and allele frequencies of miRNA-27a rs895819 A/G and Leptin rs7799039 G/A. RESULTS The GG genotype and G allele frequencies of miRNA-27a rs895819 A/G were higher in the case group than in the control group, and the AA genotype and A allele frequencies of Leptin rs7799039 G/A were also higher in the case group than in the control group (all P<0.05). MiRNA-27a rs895819 A/G and Leptin rs7799039 G/A polymorphisms increased the risk of RSA (Exp (B)=2.732, 95% CI=1.625~4.596, P=0.000; Exp (B)=4.081, 95% CI=1.817~9.164, P=0.001). GG-AA or AG-AA carriers had a higher risk of RSA. The miRNA-27a expression of AA carriers of miRNA-27a rs895819 was lower than that of AG+GG carriers both in the case and control groups (all P=0.024). The plasma leptin concentration of GG carriers was lower than that of GA+AA carriers in the case group (P=0.026). CONCLUSIONS The polymorphisms of miRNA-27a rs895819 A/G and Leptin rs7799039 G/A may contribute to an increased risk of RSA.


Assuntos
Aborto Habitual/genética , Frequência do Gene/genética , Predisposição Genética para Doença , Leptina/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Aborto Habitual/sangue , Adulto , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Leptina/sangue , Modelos Logísticos , MicroRNAs/sangue , Gravidez , Fatores de Risco
12.
J Comput Chem ; 36(7): 449-58, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25565146

RESUMO

Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed.

13.
Biotechnol Bioeng ; 112(4): 696-704, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25333717

RESUMO

Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems.


Assuntos
Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Tirosina/metabolismo , Microscopia de Força Atômica , Termodinâmica
14.
J Chem Phys ; 141(24): 244316, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554160

RESUMO

Lanthanide tetrahalide molecules LnX4 (Ln = Ce, Pr, Tb; X = F, Cl, Br, I) have been investigated by density functional theory at the levels of the relativistic Zero Order Regular Approximation and the relativistic energy-consistent pseudopotentials, using frozen small- and medium-cores. The calculated bond lengths and vibrational frequencies are close to the experimental data. Our calculations indicate 4f shell contributions to bonding in LnX4, in particular for the early lanthanides, which show significant overlap between the Ln 4f-shell and the halogen np-shells. The 4f shells contribute to Ln-X bonding in LnX4 about one third more than in LnX3.

15.
J Colloid Interface Sci ; 666: 585-593, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613980

RESUMO

Capacitive deionization (CDI) is flourishing as an energy-efficient and cost-effective water desalination method. However, challenges such as electrode degradation and fouling have hindered the practical deployment of CDI technology. To address these challenges, the key point of our strategy is applying a hydrophilic coating composed of polyethylene glycol (PEG)-functionalized nano-TiO2/polyvinylidene fluoride (PVDF) to the electrode interface (labeled as APPT electrode). The PEG/PVDF/TiO2 layer not only mitigates the co-ion depletion, but also imparts the activated carbon (AC) electrode hydrophilicity. As anticipated, the APPT electrode possessed an enhanced desalination capacity of 83.54 µmol g-1 and a low energy consumption of 17.99 Wh m-3 in 10 mM sodium chloride solution compared with the bare AC electrode. Notably, the APPT maintained about 93.19 % of its desalination capacity after 50 consecutive adsorption-desorption cycles in the presence of bovine serum albumin (BSA). During the trial, moreover, no obvious overall performance decline was noted in concentration reduction (Δc), water recovery (WR) and productivity (P) over 50 cycles. This strategy realizes energy-efficient, antifouling and stable brackish water desalination and has great promise for practical applications.

16.
Biotechnol Bioeng ; 110(1): 173-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22886619

RESUMO

Biofuel cells (BFCs) use enzymes and microbial cells to produce energy from bioavailable substrates and treat various wastewaters, and cathodic oxygen reduction is a key factor governing the efficiency of BFCs. In this study, we demonstrated that a green alga, Chlamydomonas reinhardtii, could directly mediate oxygen reduction. Cyclic voltammogram analysis revealed that the C. reinhardtii biofilm formed on a solid electrode was responsible for oxygen reduction without dosing of electron mediator. Furthermore, 4-electron oxygen reduction pathway was found in this self-sustained, light-responded BFC. The results of this study could expand our understanding and viewpoints of biocathode catalysis, which is essential for novel catalyst design and development for BFCs.


Assuntos
Processos Autotróficos/fisiologia , Fontes de Energia Bioelétrica , Reatores Biológicos , Chlamydomonas reinhardtii/metabolismo , Oxigênio/metabolismo , Biocombustíveis , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/fisiologia , Eletrodos , Cinética , Oxirredução
17.
Phys Chem Chem Phys ; 15(20): 7839-47, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23598823

RESUMO

The trends in the series of lanthanoid (lanthanide) trifluoride molecules LnF3 (Ln = La to Lu) are governed by the valence-active Ln(4f,5d,5p,6s) shells. The series is investigated by quasi-relativistic density functional theory at both the scalar and spin-orbit-coupled levels. Integrating many of the previous experimental and theoretical deductions, we obtain the following comprehensive picture: (1) The comparatively small Ln-F bond length contraction of 14 pm from La to Lu is rather smooth but weakly modulated by spin-orbit coupling. (2) From La to Lu the floppy structure becomes more quasi-planar. (3) The heterolytic LnF bond energies (⅓LnF3→⅓Ln(3+) + F(-)) at the spin-orbit averaged level increase smoothly from 15.3 to 16.3 eV for La to Lu, only the 'divalent' lanthanoids Eu and Yb are outliers with 0.2 eV higher bond energies. (4) The homolytic LnF bond energies (⅓LnF3→⅓Ln + F) however show an overall W-shaped double-periodicity with maxima for LaF3, GdF3 and LuF3, decreasing from La to Eu and from Gd to Yb, the large individual variations being caused by different spin-orbit coupling and Coulomb interaction effects in Ln(0) and LnF3. (5) The Ln-F interaction is basically ionic (increasing with decreasing ionic radii) with some dative Ln(3+)← F(-) bonding. (6) The latter is of the Ln(5d)-F(2p) type with a rather constant bond order from La to Lu, with small Ln(5p) and very small Ln(4f) semi-core contributions decreasing from La to Lu. All these trends are rationalized.

18.
Surg Endosc ; 27(4): 1315-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23306617

RESUMO

BACKGROUND: Hepatolithiasis removal is associated with high rates of postoperative residual and recurrence, which in some cases may require multiple surgeries. The progress and development of laparoscopic techniques introduced a new way of treating hepatolithiasis. However, the selection criteria for laparoscopic hepatolithiasis surgery, particularly among patients with a history of biliary surgery, remain undetermined. This study aimed to evaluate the safety, feasibility, and efficacy of reoperation for the treatment of hepatolithiasis via a laparoscopic approach. METHODS: A retrospective analysis of the perioperative course and outcomes was performed on 90 patients who underwent laparoscopic procedures for hepatolithiasis between January 1, 2008, and December 31, 2012. Thirty-eight patients had previous biliary tract operative procedures (PB group) and 52 patients had no previous biliary tract procedures (NPB). RESULTS: There was no significant difference in operative time (342.3 ± 101.0 vs. 334.1 ± 102.7 min), intraoperative blood loss (561.2 ± 458.8 vs. 546.3 ± 570.5 ml), intraoperative transfusion (15.8 vs. 19.2 %), postoperative hospitalization (12.6 ± 4.2 vs. 13.4 % ± 6.3 days), postoperative complications (18.4 vs. 23.1 %), conversion to open laparotomy (10.5 vs. 9.6 %), or intraoperative stone clearance rate (94.7 vs. 90.4 %). There was also no significant difference in stone recurrence (7.9 vs. 11.5 %) and recurrent cholangitis (5.3 vs. 13.5 %) at a mean of 19 months of follow-up (range, 3-51 months) for PB patients compared to NPB patients. The final stone clearance rate was 100 % in both groups. CONCLUSIONS: Reoperation for hepatolithiasis by laparoscopic approach is safe and feasible for selected patients who have undergone previous biliary operations.


Assuntos
Laparoscopia , Litíase/cirurgia , Hepatopatias/cirurgia , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reoperação , Estudos Retrospectivos , Adulto Jovem
19.
ACS Synth Biol ; 12(7): 2178-2186, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37436915

RESUMO

The Roseobacter clade bacteria are of great significance in marine ecology and biogeochemical cycles, and they are potential microbial chassis for marine synthetic biology due to their versatile metabolic capabilities. Here, we adapted a CRISPR-Cas-based system, base editing, with the combination of nuclease-deactivated Cas9 and deaminase for Roseobacter clade bacteria. Taking the model roseobacter Roseovarius nubinhibens as an example, we achieved precise and efficient genome editing at single-nucleotide resolution without generating double-strand breaks or requesting donor DNAs. Since R. nubinhibens can metabolize aromatic compounds, we interrogated the key genes in the ß-ketoadipate pathway with our base editing system via the introduction of premature STOP codons. The essentiality of these genes was demonstrated, and for the first time, we determined PcaQ as a transcription activator experimentally. This is the first report of CRISPR-Cas-based genome editing in the entire clade of Roseobacter bacteria. We believe that our work provides a paradigm for interrogating marine ecology and biogeochemistry with direct genotype-and-phenotype linkages and potentially opens a new avenue for the synthetic biology of marine Roseobacter bacteria.


Assuntos
Roseobacter , Roseobacter/genética , Roseobacter/metabolismo , Edição de Genes , Fenótipo , Sistemas CRISPR-Cas/genética
20.
J Hazard Mater ; 458: 131937, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421856

RESUMO

Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.


Assuntos
Nanopartículas , Rodopseudomonas , Cádmio , Cistationina gama-Liase/metabolismo , Biomineralização , Rodopseudomonas/metabolismo , Sulfetos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA