Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2316724121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232284

RESUMO

Photoelectrochemical (PEC) carbon dioxide (CO2) reduction (CO2R) holds the potential to reduce the costs of solar fuel production by integrating CO2 utilization and light harvesting within one integrated device. However, the CO2R selectivity on the photocathode is limited by the lack of catalytic active sites and competition with the hydrogen evolution reaction. On the other hand, serious parasitic light absorption occurs on the front-side-illuminated photocathode due to the poor light transmittance of CO2R cocatalyst films, resulting in extremely low photocurrent density at the CO2R equilibrium potential. This paper describes the design and fabrication of a photocathode consisting of crystal phase-modulated Ag nanocrystal cocatalysts integrated on illumination-reaction decoupled heterojunction silicon (Si) substrate for the selective and efficient conversion of CO2. Ag nanocrystals containing unconventional hexagonal close-packed phases accelerate the charge transfer process in CO2R reaction, exhibiting excellent catalytic performance. Heterojunction Si substrate decouples light absorption from the CO2R catalyst layer, preventing the parasitic light absorption. The obtained photocathode exhibits a carbon monoxide (CO) Faradaic efficiency (FE) higher than 90% in a wide potential range, with the maximum FE reaching up to 97.4% at -0.2 V vs. reversible hydrogen electrode. At the CO2/CO equilibrium potential, a CO partial photocurrent density of -2.7 mA cm-2 with a CO FE of 96.5% is achieved in 0.1 M KHCO3 electrolyte on this photocathode, surpassing the expensive benchmark Au-based PEC CO2R system.

2.
PLoS Biol ; 21(7): e3001862, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406020

RESUMO

The induction of ferroptosis in tumor cells is one of the most important mechanisms by which tumor progression can be inhibited; however, the specific regulatory mechanism underlying ferroptosis remains unclear. In this study, we found that transcription factor HBP1 has a novel function of reducing the antioxidant capacity of tumor cells. We investigated the important role of HBP1 in ferroptosis. HBP1 down-regulates the protein levels of UHRF1 by inhibiting the expression of the UHRF1 gene at the transcriptional level. Reduced levels of UHRF1 have been shown to regulate the ferroptosis-related gene CDO1 by epigenetic mechanisms, thus up-regulating the level of CDO1 and increasing the sensitivity of hepatocellular carcinoma and cervical cancer cells to ferroptosis. On this basis, we constructed metal-polyphenol-network coated HBP1 nanoparticles by combining biological and nanotechnological. MPN-HBP1 nanoparticles entered tumor cells efficiently and innocuously, induced ferroptosis, and inhibited the malignant proliferation of tumors by regulating the HBP1-UHRF1-CDO1 axis. This study provides a new perspective for further research on the regulatory mechanism underlying ferroptosis and its potential role in tumor therapy.


Assuntos
Ferroptose , Neoplasias Hepáticas , Humanos , Fatores de Transcrição/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Plant Physiol ; 194(2): 1041-1058, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772952

RESUMO

In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Mitocôndrias/metabolismo
4.
EMBO Rep ; 24(9): e56512, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37437058

RESUMO

Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.


Assuntos
Grânulos Citoplasmáticos , RNA Helicases , Humanos , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/genética , Elementos Nucleotídeos Longos e Dispersos , RNA/metabolismo , RNA Helicases/metabolismo
5.
Nano Lett ; 24(5): 1594-1601, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38134416

RESUMO

Blue quantum dot (QD) light-emitting diodes (QLEDs) exhibit unsatisfactory operational stability and electroluminescence (EL) properties due to severe nonradiative recombination induced by large numbers of dangling bond defects and charge imbalance in QD. Herein, dipolar aromatic amine-functionalized molecules with different molecular polarities are employed to regulate charge transport and passivate interfacial defects between QD and the electron transfer layer (ETL). The results show that the stronger the molecular polarity, especially with the -CF3 groups possessing a strong electron-withdrawing capacity, the more effective the defect passivation of S and Zn dangling bonds at the QD surface. Moreover, the dipole interlayer can effectively reduce electron injection into QD at high current density, enhancing charge balance and mitigating Joule heat. Finally, blue QLEDs exhibit a peak external quantum efficiency (EQE) of 21.02% with an operational lifetime (T50 at 100 cd m-2) exceeding 4000 h.

6.
Nano Lett ; 24(19): 5729-5736, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708832

RESUMO

Quantum-dot light-emitting diodes (QLEDs), a kind of promising optoelectronic device, demonstrate potential superiority in next-generation display technology. Thermal cross-linked hole transport materials (HTMs) have been employed in solution-processed QLEDs due to their excellent thermal stability and solvent resistance, whereas the unbalanced charge injection and high cross-linking temperature of cross-linked HTMs can inhibit the efficiency of QLEDs and limit their application. Herein, a low-temperature cross-linked HTM of 4,4'-bis(3-(((4-vinylbenzyl)oxy)methyl)-9H-carbazol-9-yl)-1,1'-biphenyl (DV-CBP) with a flexible styrene side chain is introduced, which reduces the cross-linking temperature to 150 °C and enhances the hole mobility up to 1.01 × 10-3 cm2 V-1 s-1. More importantly, the maximum external quantum efficiency of 21.35% is successfully obtained on the basis of the DV-CBP as a cross-linked hole transport layer (HTL) for blue QLEDs. The low-temperature cross-linked high-mobility HTL using flexible side chains could be an excellent alternative for future HTL development.

7.
Nano Lett ; 24(17): 5284-5291, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626333

RESUMO

The performance of blue quantum dot light-emitting diodes (QLEDs) is limited by unbalanced charge injection, resulting from insufficient holes caused by low mobility or significant energy barriers. Here, we introduce an angular-shaped heteroarene based on cyclopentane[b]thiopyran (C8-SS) to modify the hole transport layer poly-N-vinylcarbazole (PVK), in blue QLEDs. C8-SS exhibits high hole mobility and conductivity due to the π···π and S···π interactions. Introducing C8-SS to PVK significantly enhanced hole mobility, increasing it by 2 orders of magnitude from 2.44 × 10-6 to 1.73 × 10-4 cm2 V-1 s-1. Benefiting from high mobility and conductivity, PVK:C8-SS-based QLEDs exhibit a low turn-on voltage (Von) of 3.2 V. More importantly, the optimized QLEDs achieve a high peak power efficiency (PE) of 7.13 lm/W, which is 2.65 times that of the control QLEDs. The as-proposed interface engineering provides a novel and effective strategy for achieving high-performance blue QLEDs in low-energy consumption lighting applications.

8.
J Neurosci ; 43(13): 2305-2325, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36813575

RESUMO

Cholecystokinin (CCK) enables excitatory circuit long-term potentiation (LTP). Here, we investigated its involvement in the enhancement of inhibitory synapses. Activation of GABA neurons suppressed neuronal responses in the neocortex to a forthcoming auditory stimulus in mice of both sexes. High-frequency laser stimulation (HFLS) of GABAergic neurons potentiated this suppression. HFLS of CCK interneurons could induce the LTP of their inhibition toward pyramidal neurons. This potentiation was abolished in CCK knock-out mice but intact in mice with both CCK1R and 2R knockout of both sexes. Next, we combined bioinformatics analysis, multiple unbiased cell-based assays, and histology examinations to identify a novel CCK receptor, GPR173. We propose GPR173 as CCK3R, which mediates the relationship between cortical CCK interneuron signaling and inhibitory LTP in the mice of either sex. Thus, GPR173 might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.SIGNIFICANCE STATEMENT CCK, the most abundant and widely distributed neuropeptide in the CNS, colocalizes with many neurotransmitters and modulators. GABA is one of the important inhibitory neurotransmitters, and much evidence shows that CCK may be involved in modulating GABA signaling in many brain areas. However, the role of CCK-GABA neurons in the cortical microcircuits is still unclear. We identified a novel CCK receptor, GPR173, localized in the CCK-GABA synapses and mediated the enhancement of the GABA inhibition effect, which might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.


Assuntos
GABAérgicos , Receptores da Colecistocinina , Masculino , Feminino , Camundongos , Animais , GABAérgicos/farmacologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos Knockout , Interneurônios , Colecistocinina , Ácido gama-Aminobutírico/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Acoplados a Proteínas G/genética
9.
Opt Express ; 32(11): 19655-19664, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859095

RESUMO

A cost-effective method to achieve a 2-3 µm wavelength light source on silicon represents a major challenge. In this study, we have developed a novel approach that combines an epitaxial growth and the ion-slicing technique. A 2.1 µm wavelength laser on a wafer-scale heterogeneous integrated InP/SiO2/Si (InPOI) substrate fabricated by ion-slicing technique was achieved by epitaxial growth. The performance of the lasers on the InPOI are comparable with the InP, where the threshold current density (Jth) was 1.3 kA/cm2 at 283 K when operated under continuous wave (CW) mode. The high thermal conductivity of Si resulted in improved high-temperature laser performance on the InPOI. The proposed method offers a novel means of integrating an on-chip light source.

10.
Mol Psychiatry ; 28(8): 3459-3474, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365241

RESUMO

Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Humanos , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Receptor de Colecistocinina B/fisiologia , Depressão/tratamento farmacológico , Colecistocinina/farmacologia , Colecistocinina/fisiologia
11.
Haemophilia ; 30(3): 809-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616526

RESUMO

BACKGROUND: There is a lack of research on the relationship between pain catastrophizing, kinesiophobia, and physical activity (PA) in people with haemophilia (PWH), and the underlying mechanisms connecting these variables remain unclear. AIM: The study's aim was to clarify the roles of kinesiophobia and self-efficacy in the relationship between pain catastrophizing and PA in PWH. METHODS: This cross-sectional study included adult PWH at the Haemophilia Centre of a Tertiary hospital in Beijing, China. The following questionnaires were used to collect data: the general information, the International Physical Activity Short Questionnaire, the Pain Catastrophizing Scale, the Tampa Scale of Kinesiophobia Scale, and the Exercise Self-Efficacy Scale. RESULTS: The study included a total of 187 PWH, including 154 having haemophilia A and 33 having haemophilia B. The median interquartile range of PA was 594 (198, 1554) MET-min/wk. There were significant differences in PA of patients based on age stage, treatment modality, highest pain score within the last seven days, and presence of haemophilic arthropathy (p < .05). It was showed that pain catastrophizing could directly predict PA (p < .001), accounting for 38.13% of the total effect. Pain catastrophizing also had indirect effects on PA through the mediating factors of kinesiophobia or self-efficacy, and through the chain-mediating effect of kinesiophobia and self-efficacy, accounting for 38.40%, 17.07%, and 6.40%, respectively. CONCLUSION: The study discovered that PWH have limited PA due to pain catastrophizing. This not only directly affects their activity but also indirectly influences it through kinesiophobia and self-efficacy.


Assuntos
Catastrofização , Exercício Físico , Hemofilia A , Autoeficácia , Humanos , Hemofilia A/psicologia , Hemofilia A/complicações , Adulto , Exercício Físico/psicologia , Masculino , Estudos Transversais , Catastrofização/psicologia , Feminino , Pessoa de Meia-Idade , Transtornos Fóbicos/psicologia , Adulto Jovem , Inquéritos e Questionários , Adolescente , Cinesiofobia
12.
Nutr Metab Cardiovasc Dis ; 34(8): 1994-2001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749783

RESUMO

BACKGROUND AND AIMS: The Triglyceride-Glucose Index (TyG) has been proposed as a predictor to mortality, yet its association remains incompletely understood for individuals with or without chronic kidney disease (CKD). METHODS AND RESULTS: We analyzed data from the National Health and Nutrition Examination Survey spanning the years 1999-2018. CKD was defined as eGFR level <60 ml/min/1.73 m2 or urinary albumin creatinine ratio ≥30 mg/g. We employed the Cox proportional-hazards model to evaluate the incident risk of mortality associated with TyG among both non-CKD and CKD individuals. In the current analysis, 19,426 individuals were without CKD, while 2975 individuals had CKD. The overall mean TyG was 8.65, with significant difference between non-CKD and CKD individuals (8.60 vs 8.95, P < 0.001). The TyG index exhibited linear associations with incident cardiovascular disease (CVD) mortality and all-cause mortality among non-CKD and CKD individuals, respectively. A per-unit increase in the TyG index was significantly associated with CVD mortality for both non-CKD (HR = 1.24, 95%CI = 1.09-1.41) and CKD participants (HR = 1.19, 95%CI = 1.04-1.36), with no significant difference in the associations between the two groups (P = 0.091). For both non-CKD and CKD participants, TyG index was significantly associated with CVD mortality and all-cause mortality among those with age <65, but not for those with age ≥65. CONCLUSIONS: Our findings underscore the TyG index's as a valuable predictive tool for assessing the risk of all-cause and CVD mortality in both individuals with and without CKD.


Assuntos
Biomarcadores , Glicemia , Doenças Cardiovasculares , Inquéritos Nutricionais , Insuficiência Renal Crônica , Triglicerídeos , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/diagnóstico , Masculino , Feminino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Triglicerídeos/sangue , Medição de Risco , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Idoso , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Fatores de Tempo , Prognóstico , Incidência , Fatores de Risco , Valor Preditivo dos Testes , Causas de Morte , Taxa de Filtração Glomerular
13.
BMC Med Imaging ; 24(1): 45, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360550

RESUMO

BACKGROUND: Tumor mutational burden (TMB) is one of the most significant predictive biomarkers of immunotherapy efficacy in non-small cell lung cancer (NSCLC). Radiomics allows high-throughput extraction and analysis of advanced and quantitative medical imaging features. This study develops and validates a radiomic model for predicting TMB level and the response to immunotherapy based on CT features in NSCLC. METHOD: Pre-operative chest CT images of 127 patients with NSCLC were retrospectively studied. The 3D-Slicer software was used to outline the region of interest and extract features from the CT images. Radiomics prediction model was constructed by LASSO and multiple logistic regression in a training dataset. The model was validated by receiver operating characteristic (ROC) curves and calibration curves using external datasets. Decision curve analysis was used to assess the value of the model for clinical application. RESULTS: A total of 1037 radiomic features were extracted from the CT images of NSCLC patients from TCGA. LASSO regression selected three radiomics features (Flatness, Autocorrelation and Minimum), which were associated with TMB level in NSCLC. A TMB prediction model consisting of 3 radiomic features was constructed by multiple logistic regression. The area under the curve (AUC) value in the TCGA training dataset was 0.816 (95% CI: 0.7109-0.9203) for predicting TMB level in NSCLC. The AUC value in external validation dataset I was 0.775 (95% CI: 0.5528-0.9972) for predicting TMB level in NSCLC, and the AUC value in external validation dataset II was 0.762 (95% CI: 0.5669-0.9569) for predicting the efficacy of immunotherapy in NSCLC. CONCLUSION: The model based on CT radiomic features helps to achieve cost effective improvement in TMB classification and precise immunotherapy treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Radiômica , Tomografia Computadorizada por Raios X/métodos , Biomarcadores Tumorais , Imunoterapia
14.
Nucleic Acids Res ; 50(11): 6137-6153, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687115

RESUMO

Schlafen-5 (SLFN5) is an interferon-induced protein of the Schlafen family, which are involved in immune responses and oncogenesis. To date, little is known regarding its anti-HIV-1 function. Here, the authors report that overexpression of SLFN5 inhibits HIV-1 replication and reduces viral mRNA levels, whereas depletion of endogenous SLFN5 promotes HIV-1 replication. Moreover, they show that SLFN5 markedly decreases the transcriptional activity of HIV-1 long terminal repeat (LTR) via binding to two sequences in the U5-R region, which consequently represses the recruitment of RNA polymerase II to the transcription initiation site. Mutagenesis studies show the importance of nuclear localization and the N-terminal 1-570 amino acids fragment in the inhibition of HIV-1. Further mechanistic studies demonstrate that SLFN5 interacts with components of the PRC2 complex, G9a and Histone H3, thereby promoting H3K27me2 and H3K27me3 modification leading to silencing HIV-1 transcription. In concert with this, they find that SLFN5 blocks the activation of latent HIV-1. Altogether, their findings demonstrate that SLFN5 is a transcriptional repressor of HIV-1 through epigenetic modulation and a potential determinant of HIV-1 latency.


Assuntos
Proteínas de Ciclo Celular , Epigênese Genética , Infecções por HIV , HIV-1 , Proteínas de Ciclo Celular/genética , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Histonas/genética , Humanos , Ativação Viral , Latência Viral/genética , Replicação Viral/genética
15.
Eur Spine J ; 33(3): 924-931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38008871

RESUMO

OBJECTIVE: To evaluate the validity of intraoperative evoked potential (EP) including motor evoked potential (MEP) and somatosensory evoked potentials (SEP) as a biomarker for predicting neural function changes after thoracic spinal decompression (TSD) surgery. METHOD: A consecutive series of 336 TSD surgeries were reviewed between 2010 and 2021 from four spine center. All patients with TSD were divided into 3 groups according to different intraoperative EP results: group 1, EP alerts; group 2, no obvious EP deterioration; group 3, EP improvement compared with baselines. The lower limb Japanese Orthopedic Association (JOA) scores (as well as early and long-term JOA recovery rate) were utilized to quantitatively assess pre- and postoperative neural function change. RESULTS: Among the 3 subgroups according to the different EP changes, the early JOA recovery rate (RR%) in the EP improvement group was significantly better than the other two groups (51.3 ± 58.6* vs. 27.5 ± 31.2 and 33.3 ± 43.1; p < 0.01) after 3-month follow-up. The mean MEP and SEP amplitude were from 116 ± 57 µV to 347 ± 71 µV (p < 0.01) and from 1.86 ± 0.24 µV to 2.65 ± 0.29 µV (p < 0.01) between spinal cord pre-decompression and post-decompression. Moreover, multivariate logistic regression analysis revealed that risk factors of EP improvement were duration of symptom (p < 0.001, OR 10.9) and Preop. neurologic deficit degree (p = 0.013, OR 7.46). CONCLUSION: The intraoperative EP can predict postoperative neural function changes as a biomarker during TSD. Patient with EP improvement probably has better prognosis for early neural function recovery. The duration of symptom and preoperative neurologic deficit degree may be related to intraoperative EP improvement.


Assuntos
Potencial Evocado Motor , Potenciais Somatossensoriais Evocados , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Potencial Evocado Motor/fisiologia , Coluna Vertebral , Biomarcadores , Descompressão , Estudos Retrospectivos
16.
Eur Spine J ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775820

RESUMO

OBJECTIVE: To report a "critical phase" (between osteotomy completion and correction beginning) that will frequently lead to the reversible intraoperative neurophysiological monitoring (IOM) change during posterior vertebral column resection (PVCR) surgery. METHODS: The study sample consisted of 120 patients with severe spine deformity who underwent PVCR and deformity correction surgeries. Those patients were recruited consecutively from 2010 to 2018 January in our spine center. The detailed IOM data (the amplitude of MEP & SEP) and its corresponding surgical points were collected prospectively. Early and long-term postoperative neurologic outcomes were assessed for the following functions: motor, sensory, and pain at immediate postoperative and 1-year post-operation in this cases series. RESULTS: A total of 105 (105/120) patients presented varying degrees of IOM reduction in the critical phase; the mean IOM amplitude retention vs rescue rate was 27% ± 11.2 versus 58% ± 16.9, P < 0.01 (MEP) & 34% ± 8.3 versus 66% ± 12.4 P < 0.01 (SEP). Patients with postoperative spinal deficits often had a significantly longer IOM-alerting duration than the patients without (p < 0.01, Mann-Whitney U-test), and IOM-alerting duration greater than 39.5 min was identified as an independent predictor of the risk of postoperative spinal deficits. CONCLUSIONS: The reversible IOM events probably often appear in the critical phase during PVCR surgery. The new postoperative spinal deficits are possible for patients without satisfied IOM recovery or alerting duration greater than 39.5 min. Timely and suitable surgical interventions are useful for rescuing the IOM alerts.

17.
Chem Soc Rev ; 52(14): 4644-4671, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37325843

RESUMO

Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.

18.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928396

RESUMO

Proteomics offers a robust method for quantifying proteins and elucidating their roles in cellular functions, surpassing the insights provided by transcriptomics. The Clinical Proteomic Tumor Analysis Consortium database, enriched with comprehensive cancer proteomics data including phosphorylation and ubiquitination profiles, alongside transcriptomics data from the Genomic Data Commons, allow for integrative molecular studies of cancer. The ProteoCancer Analysis Suite (PCAS), our newly developed R package and Shinyapp, leverages these resources to facilitate in-depth analyses of proteomics, phosphoproteomics, and transcriptomics, enhancing our understanding of the tumor microenvironment through features like immune infiltration and drug sensitivity analysis. This tool aids in identifying critical signaling pathways and therapeutic targets, particularly through its detailed phosphoproteomic analysis. To demonstrate the functionality of the PCAS, we conducted an analysis of GAPDH across multiple cancer types, revealing a significant upregulation of protein levels, which is consistent with its important biological and clinical significance in tumors, as indicated in our prior research. Further experiments were used to validate the findings performed using the tool. In conclusion, the PCAS is a powerful and valuable tool for conducting comprehensive proteomic analyses, significantly enhancing our ability to uncover oncogenic mechanisms and identify potential therapeutic targets in cancer research.


Assuntos
Neoplasias , Proteômica , Humanos , Proteômica/métodos , Neoplasias/metabolismo , Neoplasias/genética , Microambiente Tumoral/genética , Software , Biologia Computacional/métodos , Proteoma/metabolismo
19.
Molecules ; 29(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38731644

RESUMO

A novel pretreatment strategy utilizing a combination of NaOH and 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) was proposed to enhance the enzymatic hydrolysis of abandoned Medium-density fiberboard (MDF). The synergistic effect of NaOH and [Bmim]Cl pretreatment significantly improved the glucose yield, reaching 445.8 mg/g within 72 h, which was 5.04 times higher than that of the untreated samples. The working mechanism was elucidated according to chemical composition, as well as FTIR, 13C NMR, XRD, and SEM analyses. The combined effects of NaOH and [Bmim]Cl led to lignin degradation, hemicellulose removal, the destruction and erosion of crystalline regions, pores, and an irregular microscopic morphology. In addition, by comparing the enzymatic hydrolysis sugar yield and elemental nitrogen content of untreated MDF samples, eucalyptus, and hot mill fibers (HMF), it was demonstrated that the presence of adhesives and additives in waste MDF significantly influences its hydrolysis process. The sugar yield of untreated MDF samples (88.5 mg/g) was compared with those subjected to hydrothermal pretreatment (183.2 mg/g), Ionic liquid (IL) pretreatment (406.1 mg/g), and microwave-assisted ionic liquid pretreatment (MWI) (281.3 mg/g). A long water bath pretreatment can reduce the effect of adhesives and additives on the enzymatic hydrolysis of waste MDF. The sugar yield produced by the combined pretreatment proposed in this study and the removal ability of adhesives and additives highlight the great potential of our pretreatment technology in the recycling of waste fiberboard.

20.
J Sci Food Agric ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666745

RESUMO

BACKGROUND: Complex phosphates (CP) can improve the physicochemical properties and gelation properties of myofibrillar fibrous protein (MP) in mixed meat products, but an excessive intake of phosphates over a long period of time is harmful to health. The present study investigated the effects of partial or complete substitution of CP with sodium bicarbonate (SB) on the physicochemical properties and gel properties of beef-pork-chicken mixed myofibrillar protein (BPC-MP), aiming to evaluate the feasibility of this method in reducing the amount of phosphate in mixed meat products. RESULTS: Under the optimal substitution conditions, the turbidity of BPC-MP was reduced by 37.8%, the net negative potential was increased by 28.9% and the modulus of elasticity (G') was increased. The tertiary structure indexes of protein (including fluorescence intensity, surface hydrophobicity and active thiol content) were significantly changed, whereas the α-helix and ß-turn angle contents in the secondary structure of protein were significantly increased. In addition, the water retention ability and strength of gel were also improved, which were increased by 20.7% and 42.6%, respectively. The results of scanning electron microscopy showed that the SB substitution group had a more compact and ordered microstructure. CONCLUSION: The results showed that partial substitution of CP with SB reduced the amount of phosphate added to BPC-MP and had a positive effect on the physicochemical and gel properties of BPC-MP. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA