Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819320

RESUMO

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.

2.
New Phytol ; 241(4): 1510-1524, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38130037

RESUMO

Brassinosteroids (BRs) are plant hormones that are essential in plant growth and development. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are located on the plasma membrane, function as co-receptors that accept and transmit BR signals. PROHIBITIN 3 (PHB3) was identified in both BRI1 and BAK1 complexes by affinity purification and LC-MS/MS analysis. Biochemical data showed that BRI1/BAK1 interacted with PHB3 in vitro and in vivo. BRI1/BAK1 phosphorylated PHB3 in vitro. When the Thr-80 amino acid in PHB3 was mutated to Ala, the mutant protein was not phosphorylated by BRI1 and the mutant protein interaction with BRI1 was abolished in the yeast two-hybrid assay. BAK1 did not phosphorylate the mutant protein PHB3T54A . The loss-of-function phb3 mutant showed a weaker BR signal than the wild-type. Genetic analyses revealed that PHB3 is a BRI1/BAK1 downstream substrate that participates in BR signalling. PHB3 has five homozygous in tomato, and we named the closest to AtPHB3 as SlPHB3.1. Biochemical data showed that SlBRI1/SlSERK3A/SlSERK3B interacted with SlPHB3.1 and SlPHB3.3. The CRISPR-Cas9 method generated slphb3.1 mutant led to a BR signal stunted relatively in tomatoes. PHB3 is a new component of the BR signal pathway in both Arabidopsis and tomato.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Brassinosteroides/metabolismo , Solanum lycopersicum/genética , Proteínas Quinases/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Proibitinas , Espectrometria de Massas em Tandem , Transdução de Sinais/fisiologia , Proteínas Mutantes
3.
Langmuir ; 40(21): 10980-10991, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739526

RESUMO

Functionalized hexagonal boron nitride nanosheets (BNNSs) have arisen as compelling anticorrosive additives, yet the precise mechanism of their corrosion resistance enhancement in coatings remains unclear. Here, polyethylenimine functionalized BNNSs (PEI-BNNSs) with approximately 6-11 layers were prepared through a "one-step" method. Then, the PEI-BNNSs/Waterborne epoxy (WEP) composite coatings were incorporated via the waterborne latex blending method for the anticorrosion of the Q235 substrate. The impedance modulus (|Z|f = 0.01 Hz) of 0.5 wt % PEI-BNNSs/WEP composite coating soaked in 3.5 wt % NaCl solution for 35 days increased by 4 orders of magnitude compared to pure WEP coating, exhibiting exceptional long-term resistance against corrosion. The positron annihilation lifetime spectroscopy and corrosion product analysis demonstrated that the reinforced anticorrosion capabilities are not solely ascribed to the "tortuous path effect" arising from BNNSs impermeability. These mechanisms also encompass the reduction in free volume fraction and radius of the free volume cavities within the composite coating brought about by the PEI molecules. Additionally, the increase in coating adhesion, promoted by PEI, plays an important role in augmenting the barrier properties against corrosive agents. This study provided a full comprehension of the role played by functionalized BNNSs in fortifying the anticorrosion attributes of WEP coatings.

4.
J Sci Food Agric ; 104(3): 1531-1538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37824792

RESUMO

BACKGROUND: Excessive sugar consumption has been linked to type 2 diabetes, obesity and other diseases. Therefore, it is indispensable to reduce sugar of food. However, the sensory characteristics of food are affected after sugar reduction (SR). Currently, SR has been reported in drinks, jams, candies, and other fruit related or sweet foods; but salty or protein related foods have not been explored, therefore there is a big gap that needs to be filled. RESULTS: Sensory scores of initial sweetness and sweetness reduced by 0.26 and 0.12 in 10% SR dried fish mince product compared with control, and there was a small difference between 25% SR (3.33) and 40% SR (3.09) samples. It also showed that 10% SR sample had a small reduction in sweetness value and free sugar content by 3.5% (0.42/11.9) and 7.8% (2.12/27.06) compared with control; while values in 25% SR sample decreased sharply but were not much different from 40% SR sample. Electronic nose results showed that SR had a small effect on odor. Texture analysis showed that texture properties of 25% SR sample were significantly different from control. CONCLUSIONS: Dried fish mince product with below 10% SR had a small difference on the sensory characteristics and there was a big change when SR was more than 20%. Dried fish mince product with 25% SR and 40% SR had no significant difference. SR had a small effect on odor, but had a great effect on texture properties, especially over 20% SR. © 2023 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Tipo 2 , Açúcares , Animais , Açúcares/análise , Produtos Pesqueiros , Manipulação de Alimentos/métodos , Frutas/química
5.
Clin Psychol Psychother ; 31(2): e2990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659274

RESUMO

BACKGROUND: The prevalence of suicide is high among major depressive adolescents. Poor sleep quality has been documented as a significant risk factor for suicide, influencing perceived social support. Enhanced social support acts as a buffer against suicidal ideation and positively impacts resilience, reducing the prevalence of suicidal ideation. This reciprocal relationship between sleep quality, social support and resilience forms the basis for understanding the mechanisms contributing to suicidal ideation in major depressive adolescents. METHODS: A total of 585 major depressive adolescents aged 11 to 24 years was conducted to explore these associations. Assessments included the Pittsburgh Sleep Quality Index, Multidimensional Scale of Perceived Social Support, Connor-Davidson Resilience Scale and Beck Scale for Suicide Ideation. Pearson correlation and Model 6 in the SPSS program were employed for chain mediating tests. RESULTS: Better sleep quality positively predicted decreased suicide ideation (ß = 0.207, p < 0.01) and predicted lower perceived social support (ß = -0.226, p < 0.01) and resilience (ß = -0.355, p < 0.01). Perceived social support positively predicted increased resilience (ß = 0.422, p < 0.01) and negatively predicted suicide ideation (ß = -0.288, p < 0.01). Resilience negatively predicted suicide ideation (ß = -0.187, p < 0.01). Sleep quality indirectly predicted suicide ideation through perceived social support and resilience, with a mediation value of 0.0678 (95% CI [0.0359, 0.1060]), constituting 10.65% of the total effect. CONCLUSIONS: This study establishes that sleep quality indirectly predicts suicide ideation in major depressive adolescents, mediated independently by perceived social support and resilience.


Assuntos
Transtorno Depressivo Maior , Resiliência Psicológica , Qualidade do Sono , Apoio Social , Ideação Suicida , Humanos , Adolescente , Feminino , Masculino , Transtorno Depressivo Maior/psicologia , Criança , Adulto Jovem , Fatores de Risco
6.
Ann Hematol ; 102(12): 3555-3566, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37770617

RESUMO

Growing evidence suggests that highly intestinal microbiota diversity modulates host inflammation and promotes immune tolerance. Several studies have reported that patients undergoing allo-HSCT have experienced microbiota disruption that is characterized by expansion of potentially pathogenic bacteria and loss of microbiota diversity. Thus, the primary aim of this meta-analysis was to determine the association of intestinal microbiota diversity and outcomes after allo-HSCT, and the secondary aim was to analyze the associations of some specific microbiota abundances with the outcomes of allo-HSCT. Electronic databases of Pubmed, Embase, Web of Science, and Cochrane Library were searched from inception to August 2023, and 17 studies were found eligible. The pooled estimate suggested that higher intestinal microbiota diversity was significantly associated with overall survival (OS) benefit (HR = 0.66, 95% CI: 0.55-0.78), as well as decreased risk of transplant-related mortality (HR = 0.56, 95% CI: 0.41-0.76), and lower incidence of grade II-IV aGVHD (HR = 0.41, 95% CI: 0.27-0.63). Furthermore, higher abundance of Clostridiales was associated with a superior OS (HR = 0.40, 95% CI: 0.18-0.87), while higher abundance of Enterococcus (HR = 2.03, 95% CI: 1.55-2.65), γ-proteobacteria (HR = 2.82, 95% CI: 1.53-5.20), and Candida (HR = 3.80, 95% CI: 1.32-10.94) was an adverse prognostic factor for OS. Overall, this meta-analysis highlights the protective role of higher intestinal microbiota diversity on outcomes after allo-HSCT during both pre-transplant and post-transplant periods. Some specific microbiota can be useful in the identification of patients at risk of mortality, offering new tools for individualized pre-emptive or therapeutic strategies to improve allo-HSCT outcomes.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Humanos , Recidiva Local de Neoplasia/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Bactérias , Doença Enxerto-Hospedeiro/etiologia
7.
J Environ Sci (China) ; 123: 15-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521980

RESUMO

Diesel vehicles have caused serious environmental problems in China. Hence, the Chinese government has launched serious actions against air pollution and imposed more stringent regulations on diesel vehicle emissions in the latest China VI standard. To fulfill this stringent legislation, two major technical routes, including the exhaust gas recirculation (EGR) and high-efficiency selective catalytic reduction (SCR) routes, have been developed for diesel engines. Moreover, complicated aftertreatment technologies have also been developed, including use of a diesel oxidation catalyst (DOC) for controlling carbon monoxide (CO) and hydrocarbon (HC) emissions, diesel particulate filter (DPF) for particle mass (PM) emission control, SCR for the control of NOx emission, and an ammonia slip catalyst (ASC) for the control of unreacted NH3. Due to the stringent requirements of the China VI standard, the aftertreatment system needs to be more deeply integrated with the engine system. In the future, aftertreatment technologies will need further upgrades to fulfill the requirements of the near-zero emission target for diesel vehicles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Catálise , China , Gasolina , Material Particulado/análise , Veículos Automotores
8.
Blood ; 136(6): 726-739, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374849

RESUMO

Although the serum-abundant metal-binding protein transferrin (encoded by the Trf gene) is synthesized primarily in the liver, its function in the liver is largely unknown. Here, we generated hepatocyte-specific Trf knockout mice (Trf-LKO), which are viable and fertile but have impaired erythropoiesis and altered iron metabolism. Moreover, feeding Trf-LKO mice a high-iron diet increased their susceptibility to developing ferroptosis-induced liver fibrosis. Importantly, we found that treating Trf-LKO mice with the ferroptosis inhibitor ferrostatin-1 potently rescued liver fibrosis induced by either high dietary iron or carbon tetrachloride (CCl4) injections. In addition, deleting hepatic Slc39a14 expression in Trf-LKO mice significantly reduced hepatic iron accumulation, thereby reducing ferroptosis-mediated liver fibrosis induced by either a high-iron diet or CCl4 injections. Finally, we found that patients with liver cirrhosis have significantly lower levels of serum transferrin and hepatic transferrin, as well as higher levels of hepatic iron and lipid peroxidation, compared with healthy control subjects. Taken together, these data indicate that hepatic transferrin plays a protective role in maintaining liver function, providing a possible therapeutic target for preventing ferroptosis-induced liver fibrosis.


Assuntos
Ferroptose/fisiologia , Ferro/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Transferrina/fisiologia , Animais , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Cicloexilaminas/farmacologia , Citocinas/análise , Eritropoese/fisiologia , Eritropoetina/análise , Feminino , Ferroptose/efeitos dos fármacos , Hepatócitos/metabolismo , Homeostase , Sobrecarga de Ferro/complicações , Ferro da Dieta/toxicidade , Peroxidação de Lipídeos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/análise , Fenilenodiaminas/farmacologia , Transferrina/análise
9.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232562

RESUMO

Brassinosteroid (BR) signaling is very important in plant developmental processes. Its various components interact to form a signaling cascade. These components are widely studied in Arabidopsis; however, very little information is available on tomatoes. Brassinosteroid Insensitive 2 (BIN2), the downstream suppressor of BR signaling, plays a critical role in BR signal pathway, while FRIGIDA as a key suppressor of Flowering Locus C with overexpression could cause early flowering; however, how the BR signaling regulates FRIGIDA homologous protein to adjust flowering time is still unknown. This study identified 12 FRIGIDA-LIKE proteins with a conserved FRIGIDA domain in tomatoes. Yeast two-hybrid and BiFC confirmed that SlBIN2 interacts with 4 SlFRLs, which are sub-cellularly localized in the nucleus. Tissue-specific expression of SlFRLs was observed highly in young roots and flowers. Biological results revealed that SlFRLs interact with SlBIN2 to regulate early flowering. Further, the mRNA level of SlBIN2 also increased in SlFRL-overexpressed lines. The relative expression of SlCPD increased upon SlFRL silencing, while SlDWF and SlBIN2 were decreased, both of which are important for BR signaling. Our research firstly provides molecular evidence that BRs regulate tomato flowering through the interaction between SlFRLs and SlBIN2. This study will promote the understanding of the specific pathway essential for floral regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
10.
Mol Breed ; 41(3): 25, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37309421

RESUMO

Owing to their superior agronomic performance, the hybrids of vegetable crops are currently applied extensively. However, effective hybrid production requires a laborious manual emasculation to ensure the purity of hybrid seeds in tomato because of the lack of an effective male sterility system. Here, we created two types of tomato nuclear male-sterile lines with different screening markers in a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Co-knockouts of male sterile 1035 (Ms1035) and glutathione S-transferase (GSTAA) created a male-sterile line marked by a green hypocotyl. The Ms1035 biallelic mutation was introduced into the woolly tomato background, resulting in the linkage of male sterility and a non-woolly phenotype. Two types of male-sterile lines were easily selected at the seedling stage by hypocotyl color or trichome density and further showed high seed purity during hybrid seed production. Our work established the procedure for a rapid transfer of the male-sterile phenotype to the parents of hybrids without extra-modification by the CRISPR/Cas9 system that can be practically applied to hybrid seed production in tomato. This method will be the basis and example for sterile parent creation of multiple crops for hybrid production with the CRISPR/Cas9 system. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01215-2.

11.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299293

RESUMO

Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.


Assuntos
Brassinosteroides/metabolismo , Proteínas Serina-Treonina Quinases/genética , Solanum lycopersicum/genética , Tamanho Celular , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Treonina/metabolismo
12.
Haematologica ; 105(8): 2071-2082, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31601687

RESUMO

Transferrin receptor 1 (Tfr1) mediates the endocytosis of diferric transferrin in order to transport iron, and Tfr1 has been suggested to play an important role in hematopoiesis. To study the role of Tfr1 in hematopoiesis, we generated hematopoietic stem cell (HSC) specific Tfr1 knockout mice. We found that Tfr1 conditional knockout mice reached full term but died within one week of birth. Further analyses revealed that Tfr1-deficient HSC had impaired development of all hematopoietic progenitors except thrombocytes and B lymphocytes. In addition, Tfr1-deficient cells had cellular iron deficiency, which blocked the proliferation and differentiation of hematopoietic precursor cells, attenuated the commitment of hematopoietic lineages, and reduced the regeneration potential of HSC. Notably, hemin rescued the colony-forming capacity of Tfr1-deficient HSC, whereas expressing a mutant Tfr1 that lacks the protein's iron-transporting capacity failed to rescue hematopoiesis. These findings provide direct evidence that Tfr1 is essential for hematopoiesis through binding diferric transferrin to supply iron to cells.


Assuntos
Ferro , Receptores da Transferrina , Animais , Transporte Biológico , Hematopoese/genética , Ferro/metabolismo , Camundongos , Camundongos Knockout , Receptores da Transferrina/genética , Transferrina/metabolismo
13.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081382

RESUMO

High temperature is a major environmental factor that adversely affects plant growth and production. SlBRI1 is a critical receptor in brassinosteroid signalling, and its phosphorylation sites have differential functions in plant growth and development. However, the roles of the phosphorylation sites of SIBRI1 in stress tolerance are unknown. In this study, we investigated the biological functions of the phosphorylation site serine 1040 (Ser-1040) of SlBRI1 in tomato. Phenotype analysis indicated that transgenic tomato harbouring SlBRI1 dephosphorylated at Ser-1040 showed increased tolerance to heat stress, exhibiting better plant growth and plant yield under high temperature than transgenic lines expressing SlBRI1 or SlBRI1 phosphorylated at Ser-1040. Biochemical and physiological analyses further showed that antioxidant activity, cell membrane integrity, osmo-protectant accumulation, photosynthesis and transcript levels of heat stress defence genes were all elevated in tomato plants harbouring SlBRI1 dephosphorylated at Ser-1040, and the autophosphorylation level of SlBRI1 was inhibited when SlBRI1 dephosphorylated at Ser-1040. Taken together, our results demonstrate that the phosphorylation site Ser-1040 of SlBRI1 affects heat tolerance, leading to improved plant growth and yield under high-temperature conditions. Our results also indicate the promise of phosphorylation site modification as an approach for protecting crop yields from high-temperature stress.


Assuntos
Brassinosteroides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Solanum lycopersicum/metabolismo , Termotolerância , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Fosforilação , Proteínas de Plantas/química , Proteínas Quinases/química , Serina/metabolismo
14.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093294

RESUMO

BAK1 (brassinosteroid-insensitive 1 (BRI1) associated receptor kinase 1) plays major roles in multiple signaling pathways as a coreceptor to regulate plant growth and development and stress response. However, the role of BAK1 in high light signaling is still poorly understood. Here we observed that overexpression of BAK1 in Arabidopsis interferes with the function of high light in promoting plant growth and development, which is independent of the brassinosteroid (BR) signaling pathway. Further investigation shows that high light enhances the phosphorylation of BAK1 and catalase activity, thereby reducing hydrogen peroxide (H2O2) accumulation. Catalase3 (CAT3) is identified as a BAK1-interacting protein by affinity purification and LC-MS/MS analysis. Biochemical analysis confirms that BAK1 interacts with and phosphorylates all three catalases (CAT1, CAT2, and CAT3) of the Arabidopsis genome, and the trans-phosphorylation sites of three catalases with BAK1-CD are identified by LC-MS/MS in vitro. Genetic analyses reveal that the BAK1 overexpression plants knocked out all the three CAT genes completely abolishing the effect of BAK1 on suppression of high light-promoted growth. This study first unravels the role of BAK1 in mediating high light-triggered activation of CATs, thereby degrading H2O2 and regulating plant growth and development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Catalase/metabolismo , Luz , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catalase/genética , Deleção de Genes , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética
15.
J Cell Mol Med ; 23(5): 3597-3602, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30887698

RESUMO

Increasing studies show that circular RNAs (circRNAs) play vital roles in tumour progression. But, how circRNAs function in ovarian cancer is mostly unclear. Here, we detected the expression of circEPSTI1 in ovarian cancer and explored the function of circEPSTI1 in ovarian cancer via a series of experiments. Then, we performed luciferase assay and RNA immunoprecipitation (RIP) assay to explore the competing endogenous RNA (ceRNA) function of circEPSTI1 in ovarian cancer. qRT-PCR verified that circEPSTI1 was overexpressed in ovarian cancer. Inhibition of circEPSTI1 suppressed ovarian cancer cell proliferation, invasion but promoted cell apoptosis. Luciferase assays and RIP assay showed that circEPSTI1 and EPSTI1 (epithelial stromal interaction 1) could directly bind to miR-942. And circEPSTI1 could regulate EPSTI1 expression via sponging miR-942. In summary, circEPSTI1 regulated EPSTI1 expression and ovarian cancer progression by sponging miR-942. circEPSTI1 could be used as a biomarker and therapeutic target in ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , RNA Circular/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
BMC Plant Biol ; 19(1): 256, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196007

RESUMO

BACKGROUND: Appropriate brassinosteroid (BR) signal strength caused by exogenous application or endogenous regulation of BR-related genes can increase crop yield. However, precise control of BR signals is difficult and can cause unstable effects and failure to reach full potential. Phosphorylated BRASSINOSTEROID INSENSITIVE1 (BRI1), the rate-limiting receptor in BR signalling, transduces BR signals, and we recently demonstrated that modifying BRI1 phosphorylation sites alters BR signal strength and botanical characteristics in Arabidopsis. However, the functions of such phosphorylation sites in agronomic characteristics of crops remain unclear. RESULTS: In this work, we investigated the roles of tomato SlBRI1 threonine-1050 (Thr-1050). SlBRI1 mutant cu3-abs1 plants expressing SlBRI1 with a non-phosphorylatable Thr-1050 (T1050A), with a wild-type SlBRI1 transformant used as a control, were examined. The results showed enhanced autophosphorylation of SlBRI1 and BR signal strength for cu3-abs1 harbouring T1050A, which promoted yield through increased plant expansion, leaf area, fruit weight and fruit number per cluster but reduced nutrient contents, including ascorbic acid and soluble sugar levels. Moreover, plant height, stem diameter, and internodal distance were similar between the transgenic plants. CONCLUSION: Our results reveal the biological role of Thr-1050 in tomato and provide a molecular basis for establishing high-yield crops by precisely controlling BR signal strength via phosphorylation site modification.


Assuntos
Brassinosteroides/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Transdução de Sinais , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Mutação , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
17.
J Transl Med ; 17(1): 58, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30813939

RESUMO

BACKGROUND: Progesterone resistance is a problem in endometrial carcinoma, and its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of progesterone resistance and to identify the key genes and pathways mediating progesterone resistance in endometrial cancer using bioinformatics analysis. METHODS: We developed a stable MPA (medroxyprogesterone acetate)-resistant endometrial cancer cell subline named IshikawaPR. Microarray analysis was used to identify differentially expressed genes (DEGs) from triplicate samples of Ishikawa and IshikawaPR cells. PANTHER, DAVID and Metascape were used to perform gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and cBioPortal for progesterone receptor (PGR) coexpression analysis. GEO microarray (GSE17025) was utilized for validation. The protein-protein interaction network (PPI) and modular analyses were performed using Metascape and Cytoscape. Further validation were performed by real-time polymerase chain reaction (RT-PCR). RESULTS: In total, 821 DEGs were found and further analyzed by GO, KEGG pathway enrichment and PPI analyses. We found that lipid metabolism, immune system and inflammation, extracellular environment-related processes and pathways accounted for a significant portion of the enriched terms. PGR coexpression analysis revealed 7 PGR coexpressed genes (ANO1, SOX17, CGNL1, DACH1, RUNDC3B, SH3YL1 and CRISPLD1) that were also dramatically changed in IshikawaPR cells. Kaplan-Meier survival statistics revealed clinical significance for 4 out of 7 target genes. Furthermore, 8 hub genes and 4 molecular complex detections (MCODEs) were identified. CONCLUSIONS: Using microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of progesterone resistance. We offered several possible mechanisms of progesterone resistance and identified therapeutic and prognostic targets of progesterone resistance in endometrial cancer.


Assuntos
Biologia Computacional/métodos , Neoplasias do Endométrio/genética , Endométrio/anormalidades , Doenças Uterinas/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Mapas de Interação de Proteínas/genética , Receptores de Progesterona/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Regulação para Cima/genética
19.
Phys Chem Chem Phys ; 21(40): 22203-22214, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31432826

RESUMO

The N+(3P) + H2(X1Σ) → NH+(X2Π) + H(2S) reaction is important for initiating the chain reaction of ammonia synthesis in the universe. To study the dynamics of this reaction, a global accurate potential energy surface (PES) of the ground state NH was constructed by combining numerous high-level ab initio energy points with the permutation invariant polynomial neural network method. Utilizing this newly constructed PES, time-dependent wave packet calculations were performed on the state-to-state reactions of N+(3P0) + H2 (v = 0, j = 0) and N+(3P0) + D2 (v = 0, j = 0) in order to study the microscopic reaction mechanisms and dynamical isotope effects. Isotope effects have a significant influence on the rovibrational state distributions and state resolved angle distributions of the product. The total differential cross sections (DCSs) present in the aforementioned reactions are dominated by both forward and backward scattering, as expected from the observable deep well along the reaction path. Meanwhile, the rovibrational state-resolved DCSs show that both reactions are not entirely statistical at the state-to-state level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA