Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Autoimmun ; 146: 103232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692172

RESUMO

The link between type I IFN and adaptive immunity, especially T-cell immunity, in JDM still remained largely unclear. This study aimed to understand the effect of elevated type I IFN signaling on CD8+ T cell-associated muscle damage in juvenile dermatomyositis (JDM). This study used flow cytometry (FC) and RT‒PCR were used to examine the circulating cell ratio and type I IFN response. And scRNA-seq was used to examine peripheral immunity in 6 active JDM patients, 3 stable JDM patients, 3 juvenile IMNM patients and 3 age-matched healthy children. In vivo validation experiments were conducted using a mouse model induced by STING agonists and an experimental autoimmune myositis model (EAM). In vitro experiments were conducted using isolated CD8+ T-cells from JDM patients and mice. We found that active JDM patients showed an extensive type I IFN response and a decreased CD8+ T-cell ratio in the periphery (P < 0.05), which was correlated with muscle involvement (P < 0.05). Both new active JDM patients and all active JDM patients showed decreased CD8+ TCM cell ratios compared with age and gender matched stable JDM patients (P < 0.05). Compared with new pediatirc systemic lupus erythematosus (SLE) patients, new active JDM patients displayed decreased CD8+ T-cell and CD8+ TCM cell ratios (P < 0.05). Active JDM patient skeletal muscle biopsies displayed an elevated type I IFN response, upregulated MHC-I expression and CD8+ T-cell infiltration, which was validated in EAM mice. sc-RNAseq demonstrated that type I IFN signalling is the kinetic factor of abnormal differentiation and enhances the cytotoxicity of peripheral CD8+ T cells in active JDM patients, which was confirmed by in vivo and in vitro validation experiments. In summary, the elevated type I IFN signalling affected the differentiation and function of CD8+ T cells in active JDM patients. Skeletal muscle-infiltrating CD8+ T cells might migrate from the periphery under the drive of type I IFN and increased MHC I signals. Therapies targeting autoantigen-specific CD8+ T cells may represent a potential new treatment direction.


Assuntos
Autoantígenos , Linfócitos T CD8-Positivos , Dermatomiosite , Interferon Tipo I , Músculo Esquelético , Transdução de Sinais , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interferon Tipo I/metabolismo , Animais , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Transdução de Sinais/imunologia , Autoantígenos/imunologia , Feminino , Dermatomiosite/imunologia , Dermatomiosite/patologia , Dermatomiosite/metabolismo , Masculino , Criança , Modelos Animais de Doenças , Adolescente , Pré-Escolar
2.
Acta Pharmacol Sin ; 42(7): 1180-1189, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33149145

RESUMO

Anexelekto (AXL), a member of the TYRO3-AXL-MER (TAM) family of receptor tyrosine kinases (RTK), is overexpressed in varieties of tumor tissues and promotes tumor development by regulating cell proliferation, migration and invasion. In this study, we investigated the role of AXL in regulating glycolysis in human ovarian cancer (OvCa) cells. We showed that the expression of AXL mRNA and protein was significantly higher in OvCa tissue than that in normal ovarian epithelial tissue. In human OvCa cell lines suppression of AXL significantly inhibited cell proliferation, and increased the sensitivity of OvCa cells to cisplatin, which also proved by nude mice tumor formation experiment. KEGG analysis showed that AXL was significantly enriched in the glycolysis pathways of cancer. Changes in AXL expression in OvCa cells affect tumor glycolysis. We demonstrated that the promotion effect of AXL on glycolysis was mediated by phosphorylating the M2 isoform of pyruvate kinase (PKM2) at Y105. AXL expression was significantly higher in cisplatin-resistant OvCa cells A2780/DDP compared with the parental A2780 cells. Inhibition of AXL decreased the level of glycolysis in A2780/DDP cells, and increased the cytotoxicity of cisplatin against A2780/DDP cells, suggesting that AXL-mediated glycolysis was associated with cisplatin resistance in OvCa. In conclusion, this study demonstrates for the first time that AXL is involved in the regulation of the Warburg effect. Our results not only highlight the clinical value of targeting AXL, but also provide theoretical basis for the combination of AXL inhibitor and cisplatin in the treatment of OvCa.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Glicólise/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Benzocicloeptenos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Nus , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
3.
J Pharmacol Exp Ther ; 373(2): 302-310, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32029577

RESUMO

Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1ß-induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6-induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-κB pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1ß-induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine-derived, disease-modifying, antirheumatic herbal drug. SIGNIFICANCE STATEMENT: In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine-derived, disease-modifying, antirheumatic herbal drug.


Assuntos
Acroleína/análogos & derivados , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Janus Quinases/fisiologia , Fatores de Transcrição STAT/fisiologia , Sinoviócitos/efeitos dos fármacos , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Feminino , Humanos , Interleucina-1beta/farmacologia , NF-kappa B/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos
4.
Acta Pharmacol Sin ; 40(9): 1237-1244, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30914761

RESUMO

Eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, has been shown to play an important role in modulating autophagy and apoptosis in tumor cells under various stresses. In this study, we investigated the regulatory role of eEF-2K in pyroptosis (a new form of programmed necrosis) in doxorubicin-treated human melanoma cells. We found that doxorubicin (0.5-5 µmol/L) induced pyroptosis in melanoma cell lines SK-MEL-5, SK-MEL-28, and A-375 with high expression of DFNA5, but not in human breast cancer cell line MCF-7 with little expression of DFNA5. On the other hand, doxorubicin treatment activated autophagy in the melanoma cells; inhibition of autophagy by transfecting the cells with siRNA targeting Beclin1 or by pretreatment with chloroquine (20 µmol/L) significantly augmented pyroptosis, thus sensitizing the melanoma cells to doxorubicin. We further demonstrated that doxorubicin treatment activated eEF-2K in the melanoma cells, and silencing of eEF-2K blunted autophagic responses, but promoted doxorubicin-induced pyroptotic cell death. Taken together, the above results demonstrate that eEF-2K dictates the cross-talk between pyroptosis and autophagy in doxorubicin-treated human melanoma cells; suppression of eEF-2K results in inhibiting autophagy and augmenting pyroptosis, thus modulating the sensitivity of melanoma cells to doxorubicin, suggesting that targeting eEF-2K may reinforce the antitumor efficacy of doxorubicin, offering a new insight into tumor chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/fisiologia , Doxorrubicina/farmacologia , Quinase do Fator 2 de Elongação/metabolismo , Melanoma/metabolismo , Piroptose/fisiologia , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Proteínas Associadas aos Microtúbulos/metabolismo , Piroptose/efeitos dos fármacos , Receptores de Estrogênio/metabolismo
5.
Acta Pharmacol Sin ; 40(7): 919-928, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30315250

RESUMO

Autophagy, a form of cellular self-digestion by lysosome, is associated with various disease processes including cancers, and modulating autophagy has shown promise in the treatment of various malignancies. A number of natural products display strong antitumor activity, yet their mechanisms of action remain unclear. To gain a better understanding of how traditional Chinese medicine agents exert antitumor effects, we screened 480 natural compounds for their effects on autophagy using a high content screening assay detecting GFP-LC3 puncta in HeLa cells. Tubeimoside-1 (TBMS1), a triterpenoid saponin extracted from Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), was identified as a potent activator of autophagy. The activation of autophagy by TBMS1 was evidenced by increased LC3-II amount and GFP-LC3 dots, observation of autophagosomes under electron microscopy, and enhanced autophagic flux. To explore the mechanisms underlying TBMS1-activated autophagy, we performed cheminformatic analyses and surface plasmon resonance (SPR) binding assay that showed a higher likelihood of the binding between Akt protein and TBMS1. In three human breast cancer cell lines, we demonstrated that Akt-mTOR-eEF-2K pathway was involved in TBMS1-induced activation of autophagy, while Akt-mediated downregulations of Mcl-1, Bcl-xl, and Bcl-2 led to the activation of apoptosis of the breast cancer cells. Inhibition of autophagy enhanced the cytotoxic effect of TBMS1 via promoting apoptosis. Our results demonstrate the role and mechanism of TBMS1 in activating autophagy, suggesting that inhibition of cytoprotective autophagy may act as a therapeutic strategy to reinforce the activity of TBMS1 against cancers.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731767

RESUMO

In this study, 34 Traditional Chinese Medicine (TCM) compounds were screened for potential anabolic and anti-inflammatory properties on human osteoarthritic (OA) chondrocytes. The anabolic effects were assessed by measuring the glycosaminoglycan (GAG) relative to the DNA content using a 3D pellet culture model. The most chondrogenic compounds were tested in an inflammatory model consisting of 3 days of treatment with cytokines (IL-1ß/TNF-α) with or without supplementation of TCM compounds. The anti-inflammatory effects were assessed transcriptionally, biochemically and histologically. From the 34 compounds, Vanilic acid (VA), Epimedin A (Epi A) and C (Epi C), 2''-O-rhamnosylicariside II (2-O-rhs II), Icariin, Psoralidin (PS), Protocatechuicaldehyde (PCA), 4-Hydroxybenzoic acid (4-HBA) and 5-Hydroxymethylfurfural (5-HMF) showed the most profound anabolic effects. After induction of inflammation, pro-inflammatory and catabolic genes were upregulated, and GAG/DNA was decreased. VA, Epi C, PS, PCA, 4-HBA and 5-HMF exhibited anti-catabolic and anti-inflammatory effects and prevented the up-regulation of pro-inflammatory markers including metalloproteinases and cyclooxygenase 2. After two weeks of treatment with TCM compounds, the GAG/DNA ratio was restored compared with the negative control group. Immunohistochemistry and Safranin-O staining confirmed superior amounts of cartilaginous matrix in treated pellets. In conclusion, VA, Epi C, PS, PCA, 4-HBA and 5-HMF showed promising anabolic and anti-inflammatory effects.


Assuntos
Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-1beta/uso terapêutico , Medicina Tradicional Chinesa/métodos , Fator de Necrose Tumoral alfa/uso terapêutico
7.
Molecules ; 22(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574448

RESUMO

Xian-Ling-Gu-Bao capsule (XLGB), a famous traditional Chinese medicine prescription, is extensively used for the treatment of osteoporosis in China. However, few studies on the holistic quality control of XLGB have been reported. In this study, a reliable method using 18 representative components in XLGB was successfully established and applied to evaluate 34 batches of XLGB samples by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The choice of quantitative markers mostly followed four principles, i.e., absorbed components in plasma, bioactive compounds with in vitro anti-osteoporosis activity, those derived from multiple individual medicinal herbs in XLGB with multiple representative structure types, and quantitative chemical markers in the Chinese Pharmacopoeia. The results showed chemical consistency was good except for individual batches. Multivariate statistical analysis indicated that asperosaponin VI from Radix Dipsaci, epimedin C, magnoflorine, and icariin from Herba Epimedii as well as timosaponin BII from Rhizoma Anemarrhenae varied significantly in multiple samples, which hinted an assay for these four components should be completed during all of the manufacturing processes. Taken together, this study provided a feasible method for holistic quality control of XLGB by multiple chemical markers, which could play a vital role in guaranteeing the safety, effectiveness, and controllability of administering the capsules as a medication in clinics.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Cápsulas , Estabilidade de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicina Tradicional Chinesa , Estrutura Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Int J Mol Sci ; 17(12)2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27999266

RESUMO

Rhizoma Drynariae (RD), as one of the most common clinically used folk medicines, has been reported to exert potent anti-osteoporotic activity. The bioactive ingredients and mechanisms that account for its bone protective effects are under active investigation. Here we adopt a novel in silico target fishing method to reveal the target profile of RD. Cathepsin K (Ctsk) is one of the cysteine proteases that is over-expressed in osteoclasts and accounts for the increase in bone resorption in metabolic bone disorders such as postmenopausal osteoporosis. It has been the focus of target based drug discovery in recent years. We have identified two components in RD, Kushennol F and Sophoraflavanone G, that can potentially interact with Ctsk. Biological studies were performed to verify the effects of these compounds on Ctsk and its related bone resorption process, which include the use of in vitro fluorescence-based Ctsk enzyme assay, bone resorption pit formation assay, as well as Receptor Activator of Nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis using murine RAW264.7 cells. Finally, the binding mode and stability of these two compounds that interact with Ctsk were determined by molecular docking and dynamics methods. The results showed that the in silico target fishing method could successfully identify two components from RD that show inhibitory effects on the bone resorption process related to protease Ctsk.


Assuntos
Reabsorção Óssea/metabolismo , Catepsina K/antagonistas & inibidores , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Preparações de Plantas/farmacologia , Polypodiaceae/metabolismo , Animais , Linhagem Celular , Flavanonas/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligante RANK/metabolismo , Células RAW 264.7
9.
Molecules ; 21(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27213322

RESUMO

Acorns play an important role in human history and are a source of food and recipes for many cultures around the world. In this study, eleven oleanolic triterpenes, one of which was novel, were isolated from Chinese acorns (Quercus serrata var. brevipetiolata). The chemical structure of the novel triterpene, which was identified as 2α,3ß,19α-trihydroxy-24-oxo-olean-12-en-28-oic acid (1), was established based on the interpretation of chemical and spectroscopic analyses, including IR, HR-ESI-MS, and NMR experiments (¹H, (13)C NMR, DEPT, ¹H-¹H COSY, HSQC, HMBC, and NOESY). All isolated compounds were tested for their inhibitory effects on LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compared with the positive control drug indomethacin (IC50 = 47.4 µM), compounds 1, 3, 6 and 8 exhibited remarkable anti-inflammatory activities with IC50 values of 5.4, 7.8, 4.0 and 8.9 µM, respectively. Besides, compounds 2, 4, 7 and 9 also showed moderate anti-inflammatory activities with IC50 values of 10.1, 13.0, 20.1 and 17.2 µM, respectively. Furthermore, Compound 1 could inhibit TNF-α-induced IL-6 and IL-8 production in MH7A cells.


Assuntos
Inflamação/tratamento farmacológico , Ácido Oleanólico/química , Quercus/química , Triterpenos/química , Animais , Humanos , Inflamação/induzido quimicamente , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Lipopolissacarídeos/toxicidade , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Células RAW 264.7 , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
10.
Bone ; 183: 117094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582289

RESUMO

The present study aimed to establish and evaluate a preclinical model of steroid-associated osteonecrosis (SAON) in mice. Sixteen 24-week-old male C57BL/6 mice were used to establish SAON by two intraperitoneal injections of lipopolysaccharide (LPS), followed by three subcutaneous injections of methylprednisolone (MPS). Each injection was conducted on working day, with an interval of 24 h. Six cycles of injections were conducted. Additional twelve mice (age- and gender-matched) were used as normal controls. At 2 and 6 weeks after completing induction, bilateral femora and bilateral tibiae were collected for histological examination, micro-CT scanning, and bulk RNA sequencing. All mice were alive until sacrificed at the indicated time points. The typical SAON lesion was identified by histological evaluation at week 2 and week 6 with increased lacunae and TUNEL+ osteocytes. Micro-CT showed significant bone degeneration at week 6 in SAON model. Histology and histomorphometry showed significantly lower Runx2+ area, mineralizing surface (MS/BS), mineral apposition rate (MAR), bone formation rate (BFR/BS), type H vessels, Ki67+ (proliferating) cells, and higher marrow fat fraction, osteoclast number and TNFα+ areas in SAON group. Bulk RNA-seq revealed changed canonical signaling pathways regulating cell cycle, angiogenesis, osteogenesis, and osteoclastogenesis in the SAON group. The present study successfully established SAON in mice with a combination treatment of LPS and MPS, which could be considered a reliable and reproducible animal model to study the pathophysiology and molecular mechanism of early-stage SAON and to develop potential therapeutic approaches for the prevention and treatment of SAON.


Assuntos
Lipopolissacarídeos , Osteonecrose , Masculino , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Osteonecrose/tratamento farmacológico , Esteroides , Osteogênese , Metilprednisolona/uso terapêutico
11.
ACS Cent Sci ; 10(3): 628-636, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559293

RESUMO

Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.

12.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512413

RESUMO

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Assuntos
Remodelação Óssea , Glucocorticoides , Osteogênese , Animais , Camundongos , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Ácidos Graxos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Microambiente Celular/efeitos dos fármacos
13.
Arthritis Rheum ; 64(5): 1562-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22544527

RESUMO

OBJECTIVE: Cytotherapy is an insufficient method for promoting bone repair in steroid-associated osteonecrosis (SAON), and this has been attributed to impairment of the bioactivity of bone marrow-derived stem cells (BMSCs) after pulsed administration of steroids. Cryopreserved autologous bone marrow-derived mononuclear cells (BMMNCs), which contain BMSCs, might maintain their bioactivity in vitro. This study sought to investigate the effects of cryopreserved BMMNCs, before steroid administration, on the enhancement of bone repair in an established rabbit model of SAON. METHODS: For in vitro study, bone marrow was harvested 4 weeks before SAON induction from the iliac crests of rabbits (n = 10) to isolate fresh BMMNCs, and the BMMNCs were then cryopreserved for 8 weeks. Both the fresh and the cryopreserved BMMNCs were evaluated for their bioactivity and osteogenic differentiation capacity. In addition, BMMNCs were isolated 2 weeks after SAON induction and subjected to the same evaluations. For in vivo study, cryopreserved BMMNCs were implanted into the bone tunnel during core decompression of the femur (n = 12 rabbits) after the induction of SAON, and tissue regeneration was evaluated by micro-computed tomography and histologic analyses at 12 weeks postoperation. RESULTS: In vitro, there were no significant differences in the bioactivity or ability to undergo osteogenic differentiation between fresh BMMNCs and cryopreserved BMMNCs, but after SAON induction, both features were decreased significantly. In vivo, the bone mineral density, ratio of bone volume to total volume of bone, and volume and diameter of neovascularization within the bone tunnel were significantly higher in the BMMNC-treated group compared to the nontreated control group at 12 weeks postoperation. CONCLUSION: Cryopreserved BMMNCs maintained their bioactivity and promoted bone regeneration and neovascularization within the bone tunnel after core decompression in this rabbit model of SAON.


Assuntos
Transplante de Medula Óssea/métodos , Regeneração Óssea/fisiologia , Criopreservação , Necrose da Cabeça do Fêmur/terapia , Monócitos/transplante , Osteonecrose/terapia , Animais , Modelos Animais de Doenças , Cabeça do Fêmur/efeitos dos fármacos , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/patologia , Glucocorticoides/toxicidade , Masculino , Metilprednisolona/toxicidade , Coelhos
14.
Bioact Mater ; 19: 487-498, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35600973

RESUMO

The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing. Recently, the combination of implanted stem cells, suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration. In this study, a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel, articular cartilage stem cells (ACSCs) and mesoporous SiO2 nanoparticles loaded with anhydroicaritin (AHI). The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO2 nanoparticles (mSiO2 NPs). Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix (ECM) production and cartilage regeneration in vivo. Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI, an efficient bioactive natural small molecule for ACSCs chondrogenesis, within the hybrid matrix of hydrogel and mSiO2 NPs. Hence, the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.

15.
Bone ; 167: 116645, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539110

RESUMO

Destructive repair characterized by inadequate angiogenesis and osteogenesis is the main pathological progression in steroid-associated osteonecrosis of the femoral head (SONFH). Platelet-derived growth factor-BB (PDGF-BB) is an "angiogenesis and osteogenesis coupling" factor that has been used for the treatment of bone defects in clinic. This study was designed to analyze the ability of PDGF-BB for preventing destructive repair and promoting reparative osteogenesis in SONFH. Steroid-associated osteonecrosis (SAON) was induced and triggered destructive repair of the femoral head by repeated lipopolysaccharide (LPS) and methylprednisolone (MPS) injections in rabbits. At 2, 4, and 6 weeks after induction, recombinant human PDGF-BB, neutralizing PDGF-BB antibody, or saline was intramedullary injected into the proximal femora. At week 6 after SAON induction, the proximal femora were dissected for bone architecture and histological analysis. C3H10T1/2 cells and HUVECs were used for further mechanistic investigation. After PDGF-BB treatment, type H vessels and leptin receptor-positive (LepR+) mesenchymal stem cells (MSCs) increased in the affected femoral head, and more osteoblastic osteogenesis along the bone surfaces but scattered adipocytes in bone marrow tissue than that in the SAON group. PDGF-BB treatment prevented destructive repair progression and led to 50-70 % of osteonecrotic femoral heads undergoing reparative osteogenesis. In particular, we found that PDGF-BB could mediate MSC self-renewal and maintain their osteogenic potency by activating PDGFR/Akt/GSK3ß/CERB signaling in the presence of steroids. Moreover, PDGF-BB also stabled the newly formed vascular tubes by recruiting MSCs for improving intraosseous vascular integration. PDGF-BB may be a candidate for the promotion of reparative osteogenesis in SONFH.


Assuntos
Osteogênese , Osteonecrose , Animais , Coelhos , Humanos , Becaplermina , Cabeça do Fêmur/patologia , Esteroides
16.
Adv Mater ; : e2308875, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091500

RESUMO

Osteosarcoma (OS) is the most commonly occurring primary bone malignant tumor. The clinical postsurgical OS treatment faces big challenges for the staged therapeutic requirements of early anti-tumor, anti-bacterial, and long-lasting osteogenesis. Herein, multi-functional bioactive scaffolds with time-sequential functions of preventing tumor recurrence, inhibiting bacterial infection, and promoting bone defect repair are designed as a novel strategy. Nanocomposite scaffold magnesium peroxide (MgO2 )/poly (lactide-co-glycolide) is prepared by low-temperature 3D printing for controllable releasing magnesium ions (Mg2+ ) and reactive oxygen species in a time-sequential manner. The scaffold with 20 wt% MgO2 (20MP) is verified with desired mechanical properties, as well as exhibits staged release behavior of bioactive elements with hydrogen peroxide (H2 O2 ) release for the first 3 weeks, and long-lasting Mg2+ release for 12 weeks. The released H2 O2 initiates chemodynamic therapy to induce apoptosis and ferroptosis in tumor cells, along with activating the anticancer immune microenvironment by M1 polarization of macrophages. The released Mg2+ subsequently enhances bone repair by activating the Wnt3a/GSK-3ß/ß-catenin signaling pathway to promote osteogenic differentiation of bone marrow mesenchymal stem cells and create osteopromotive immune microenvironment by M2 polarization of macrophages. In conclusion, the multi-functional 20MP scaffold demonstrates time-sequential therapeutic properties as an innovative strategy for OS-associated bone defect treatment.

17.
Artigo em Inglês | MEDLINE | ID: mdl-23227098

RESUMO

Sarcandra glabra, as a type of "antipyretic-detoxicate drugs", has always been widely used in traditional Chinese medicine (TCM). The Sarcandra glabra extract (SGE) is applied frequently as anti-inflammatory and anti-infectious drug in folk medicine. However, relative experiment data supporting this effective clinical consequence was limited. In order to mimic the physiological conditions of the susceptible population, we employed restraint stress mouse model to investigate the effect of SGE against influenza. Mice were infected with influenza virus three days after restraint, while SGE was orally administrated for 10 consecutive days. Body weight, morbidity, and mortality were recorded daily. Histopathologic changes, susceptibility genes expressions and inflammatory markers in lungs were determined. Our results showed that restraint stress significantly increased susceptibility and severity of influenza virus. However, oral administration of SGE could reduce morbidity, mortality and significantly prolonged survival time. The results further showed that SGE had a crucial effect on improving susceptibility markers levels to recover the balance of host defense system and inhibiting inflammatory cytokines levels through down-regulation of NF-κB protein expression to ameliorate the lung injury. These data showed that SGE reduced the susceptibility and severity of influenza.

18.
Pharmazie ; 67(5): 457-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22764582

RESUMO

Tetracyclines have been widely used in bone histomorphometry to label new bone formation and apposition rate. However, most studies of tetracyclines have also shown their strong inhibitory action on osteoclasts and their effects on osteoblast activities as well. To even obtain the in-depth understanding on this issue, we have reviewed related studies in "Pubmed" by searching the keywords "tetracyclines and osteoclast", "tetracyclines and osteoblast", which retrieved 118 and 162 related documents, respectively. Among these papers, some described the application of tetracyclines as fluorescent marker in bone histomorphometry, while others discussed their role in protection of bone metabolism partly through inhibiting osteoclastogenesis or bone resorption and through enhancing osteogenesis. Based on the above mentioned, it seems that tetracyclines used as bone labeling markers may affect the results of bone histomorphometry to some extent. To even confirm the effect of tetracyclines on bones cells (osteoblast, osteoclast) and in vivo bone remodeling, related research work has been performed in our research team which indicated quite different results in vivo and in vitro. Therefore, the influence of tetracyclines on bones may differ in terms of different conditions which need to be further elucidated.


Assuntos
Antibacterianos/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Tetraciclinas/farmacologia , Animais , Biomarcadores/metabolismo , Remodelação Óssea/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Relação Estrutura-Atividade
19.
J Orthop Translat ; 35: 87-98, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36196075

RESUMO

Background: Sarcopenia is an age-related skeletal muscle dysfunction syndrome that is lacking validated treatments. Maximizing muscle strength in young adulthood may be a promising way to prevent sarcopenia in the elderly. The phytomolecule puerarin has been extensively used in clinical practice and reported to increase energy metabolism in skeletal muscle by directly targeting the skeletal muscle fiber. However, the bioavailability of puerarin is very poor, and almost 93% of puerarin stays in the intestine until excretion. Therefore, we hypothesize that puerarin may regulate gut microbiota to improve skeletal muscle strength and/or mass in adults. Methods: Twenty three-month old male Sprague Dawley rats were divided into two groups according to average weights, puerarin group (puerarin dissolved in 0.5% CMC-Na, 150 â€‹mg/kg/day, N â€‹= â€‹10), and control group (equal volume 0.5% CMC-Na, N â€‹= â€‹10). The treatment lasted for 8 weeks. Muscle weight, muscle fiber types and cross-sectional area (CSA), ex vivo muscle contraction test and grip strength were measured. 16S rDNA sequencing was employed to evaluate the gut microbiota composition in the sample of cecal content. Short-chain fatty acids (SCFAs) in cecal and serum were analyzed by gas chromatography-mass spectrometry. Adenosine triphosphate (ATP) concentration in skeletal muscle was also detected. Pearson's correlation was used to analyze the relations between SCFAs, ATP concentration and muscle function. Results: After puerarin treatment, grip strength, the specific twitch force, and the tetanic forces in the soleus (SOL) and extensor digitorum longus (EDL) muscle were significantly higher than those of the control group. The percentage and CSA of type II muscle fiber in EDL was higher in the puerarin group than those in the control group. Puerarin treatment significantly changed the gut microbial constitutes. Two SCFAs-productive microbiota, the families Peptococcaceae and Closteridiales, were significantly higher in the puerarin group than those in the control group, while the ratio of Prevotellaceae/Bacteroidaceae (P/B), a muscle atrophy indicator, was lower in the puerarin group. As expected, there were significant linear correlations between the concentrations of SCFAs, including cecal total SCFAs, serum n-butyric acid and total SCFAs, and skeletal muscle strength and function, including the twitch force and tetanic force of SOL and EDL, as well as the forelimb grip strength. Conclusion: In conclusion, puerarin improved the forelimb grip strength and muscle contraction function in young adult rats. The underlying mechanism may include that puerarin increased SCFAs production by regulating gut microbiota, augmented ATP synthesis and skeletal muscle strength. The translational potential of this article : Our study finds that a clinical used phytomolecule puerarin has the potential of improving skeletal muscle strength in young adult rats. As puerarin has long-term clinical experience and shows good safety, it might be a potential candidate for developing muscle strengthening agents.

20.
Arthritis Res Ther ; 24(1): 105, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545776

RESUMO

Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflammatory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mechanisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehensively reviewed.


Assuntos
Artroplastia de Substituição , Osteoartrite , Anti-Inflamatórios/uso terapêutico , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA