Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(7): 1593-1608.e20, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906446

RESUMO

Proliferating cells known as neoblasts include pluripotent stem cells (PSCs) that sustain tissue homeostasis and regeneration of lost body parts in planarians. However, the lack of markers to prospectively identify and isolate these adult PSCs has significantly hampered their characterization. We used single-cell RNA sequencing (scRNA-seq) and single-cell transplantation to address this long-standing issue. Large-scale scRNA-seq of sorted neoblasts unveiled a novel subtype of neoblast (Nb2) characterized by high levels of PIWI-1 mRNA and protein and marked by a conserved cell-surface protein-coding gene, tetraspanin 1 (tspan-1). tspan-1-positive cells survived sub-lethal irradiation, underwent clonal expansion to repopulate whole animals, and when purified with an anti-TSPAN-1 antibody, rescued the viability of lethally irradiated animals after single-cell transplantation. The first prospective isolation of an adult PSC bridges a conceptual dichotomy between functionally and molecularly defined neoblasts, shedding light on mechanisms governing in vivo pluripotency and a source of regeneration in animals. VIDEO ABSTRACT.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Helminto/metabolismo , Planárias/fisiologia , Tetraspaninas/metabolismo , Animais , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Ciclo Celular/efeitos da radiação , Regulação da Expressão Gênica , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Análise de Componente Principal , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA de Helmintos/química , RNA de Helmintos/isolamento & purificação , RNA de Helmintos/metabolismo , Regeneração/genética , Análise de Sequência de RNA , Análise de Célula Única , Tetraspaninas/genética , Irradiação Corporal Total
2.
Nature ; 628(8006): 204-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418880

RESUMO

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
3.
Brain ; 147(5): 1710-1725, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38146639

RESUMO

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Assuntos
Doença de Alzheimer , Isoindóis , Mitocôndrias , Compostos Organosselênicos , Peptidil-Prolil Isomerase F , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Humanos , Cognição/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inibidores , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-38781519

RESUMO

OBJECTIVES: The routine biomarkers for rheumatoid arthritis (RA), including anticyclic citrullinated peptide antibody (anti-CCP), rheumatoid factor (RF), immunoglobulin M (IgM), erythrocyte sedimentation rate (ESR), and C-reaction protein (CRP) have limited sensitivity and specificity. Scavenger receptor-A (SR-A) is a novel RA biomarker identified by our group recently, especially for seronegative RA. Here, we performed a large-scale multicentre study to further assess the diagnostic value of SR-A in combination with other biomarkers for RA. METHODS: The performance of SR-A in combination with other biomarkers for RA diagnosis was first revealed by a pilot study, and was further elucidated by a large-scale multicentre study. A total of 1129 individuals from 3 cohorts were recruited in the study, including RA patients, healthy controls, and patients with other common rheumatic diseases. Diagnostic properties were evaluated by the covariate-adjusted receiver-operating characteristic (AROC) curve, sensitivity, specificity and clinical association, respectively. RESULTS: Large-scale multicentre analysis showed that SR-A and anti-CCP dual combination was the optimal method for RA diagnosis, increasing the sensitivity of anti-CCP by 13% (87% vs 74%) while maintaining a specificity of 90%. In early RA patients, SR-A and anti-CCP dual combination also showed promising diagnostic value, increasing the sensitivity of anti-CCP by 7% (79% vs 72%) while maintaining a specificity of 94%. Moreover, SR-A and anti-CCP dual combination was correlated with ESR, IgM, and autoantibodies of RA patients, further revealing its clinical significance. CONCLUSION: SR-A and anti-CCP dual combination could potentially improve early diagnosis of RA, thus improving the prognosis and reducing mortality.

5.
Mol Cell Biochem ; 479(1): 171-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37138144

RESUMO

Intervertebral disc degeneration (IDD) causes pain in the back and neck. This study investigated the role of long non-coding RNA HLA complex group 18 (HCG18) in a cell model of IDD. An IDD model was established by stimulating nucleus pulposus (NP) cells with interleukin (IL)-1ß. MTT assay was performed to evaluate NP cell viability. The apoptosis was detected by flow cytometry. The expressions of HCG18, microRNA (miR)-495-3p, and follistatin-like protein-1 (FSTL1) were measured by RT-qPCR. The interactions of miR-495-3p with HCG18 and FSTL1 were analyzed by luciferase reporter assay. IL-1ß stimulation upregulated HCG18 and FSTL1, but downregulated miR-495-3p in NP cells. Silencing of HCG18 or FSTL1, as well as miR-495-3p overexpression in NP cells alleviated IL-1ß-induced apoptosis and inflammation of NP cells. Both HCG18 and FSTL1 had binding sites for miR-495-3p. Overexpression of FSTL1 abolished the effects of HCG18 silencing on IL-1ß-induced apoptosis and inflammation. The HCG18/miR-495-3p/FSTL1 axis is essential for IDD development. Therapeutic strategies targeting this axis may be used for IDD treatment.


Assuntos
Proteínas Relacionadas à Folistatina , Degeneração do Disco Intervertebral , MicroRNAs , RNA Longo não Codificante , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Relacionadas à Folistatina/genética , Apoptose , Interleucina-1beta/metabolismo , Inflamação/genética
6.
Dev Dyn ; 252(8): 1130-1142, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840366

RESUMO

BACKGROUND: The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS: To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS: Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.


Assuntos
Sistema Nervoso Simpático , Transcriptoma , Animais , RNA Mensageiro , Hibridização in Situ Fluorescente , Gânglios Simpáticos , Galinhas
7.
Mol Breed ; 43(3): 20, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37313294

RESUMO

Resistance of Capsicum annuum to Phytophthora blight is dependent on the genetic background of the resistance source and the Phytophthora capsici isolate, which poses challenges for development of generally applicable molecular markers for marker-assisted selection. In this study, the resistance to P. capsici of C. annuum was genetically mapped to chromosome 5 within a 1.68-Mb interval by genome-wide association study analysis of 237 accessions. In this candidate region, 30 KASP markers were developed using genome resequencing data for a P. capsici-resistant line (0601 M) and a susceptible line (77,013). Seven of these KASP markers, located in the coding region of a probable leucine-rich repeats receptor-like serine/threonine-protein kinase gene (Capana05g000704), were validated in the 237 accessions, which showed an average accuracy of 82.7%. The genotyping of the seven KASP markers strongly corresponded with the phenotype of 42 individual plants in a pedigree family (PC83-163) developed from the P. capsici-resistant line CM334. This research provides a set of efficient and high-throughput KASP markers for marker-assisted selection of resistance to P. capsici in C. annuum. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01367-3.

8.
Appl Opt ; 62(19): 5224-5235, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707226

RESUMO

The solution to the problem of road environmental perception is one of the essential prerequisites to realizing the autonomous driving of intelligent vehicles, and road lane detection plays a crucial role in road environmental perception. However, road lane detection in complex road scenes is challenging due to poor illumination conditions, the occlusion of other objects, and the influence of unrelated road markings. It also hinders the commercial application of autonomous driving technology in various road scenes. In order to minimize the impact of illumination factors on road lane detection tasks, researchers use deep learning (DL) technology to enhance low-light images. In this study, road lane detection is regarded as an image segmentation problem, and road lane detection is studied based on the DL approach to meet the challenge of rapid environmental changes during driving. First, the Zero-DCE++ approach is used to enhance the video frame of the road scene under low-light conditions. Then, based on the bilateral segmentation network (BiSeNet) approach, the approach of associate self-attention with BiSeNet (ASA-BiSeNet) integrating two attention mechanisms is designed to improve the road lane detection ability. Finally, the ASA-BiSeNet approach is trained based on the self-made road lane dataset for the road lane detection task. At the same time, the approach based on the BiSeNet approach is compared with the ASA-BiSeNet approach. The experimental results show that the frames per second (FPS) of the ASA-BiSeNet approach is about 152.5 FPS, and its mean intersection over union is 71.39%, which can meet the requirements of real-time autonomous driving.

9.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771000

RESUMO

Diamond holds promise for optoelectronic devices working in high-frequency, high-power and high-temperature environments, for example in some aspect of nuclear energetics industry processing and aerospace due to its wide bandgap (5.5 eV), ultimate thermal conductivity, high-pressure resistance, high radio frequency and high chemical stability. In the last several years, p-type B-doped diamond (BDD) has been fabricated to heterojunctions with all kinds of non-metal oxide (AlN, GaN, Si and carbon-based semiconductors) to form heterojunctions, which may be widely utilized in various optoelectronic device technology. This article discusses the application of diamond-based heterostructures and mainly writes about optoelectronic device fabrication, optoelectronic performance research, LEDs, photodetectors, and high-electron mobility transistor (HEMT) device applications based on diamond non-metal oxide (AlN, GaN, Si and carbon-based semiconductor) heterojunction. The discussion in this paper will provide a new scheme for the improvement of high-temperature diamond-based optoelectronics.

10.
Mod Rheumatol ; 34(1): 137-143, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36688590

RESUMO

OBJECTIVE: To investigate whether primary Sjögren's syndrome (pSS) patients with hyperglobulinemia have an increased risk of all-cause mortality. METHODS: Patients who registered in the Chinese Rheumatism Data Centre from May 2016 to July 2021 and met the 2002 American European Consensus Group criteria or 2016 American College of Rheumatology /European League Against Rheumatism classification criteria for Sjögren's syndrome were included. Hyperglobulinemia was defined as any elevated serum levels of immunoglobulin G (IgG), immunoglobulin A (IgA), or immunoglobulin M (IgM). The primary outcome was all-cause death. Data for demographic and clinical characteristics, laboratory results, disease activity, damage scores, and treatments were evaluated. RESULTS: A total of 9527 pSS patients were included in the analysis, of whom 4236 (44.5%) had at least one kind of elevated immunoglobulin level among IgG, IgA, and IgM. Patients with hyperglobulinemia had a significantly increased risk of death (crude hazard ratio 2.60; 95% confidence interval 1.91-3.55; adjusted hazard ratio 1.90; 95% confidence interval 1.20-3.01). The risk of death was positively correlated with IgG level (P trend <.001). The 5-, 10-, and 15-year survival rates of patients with hyperglobulinemia were 96.9%, 92.3%, and 87.9%, respectively, and significantly lower than the corresponding rates of 98.8%, 97.9%, and 96.4% in patients without hyperglobulinemia. CONCLUSIONS: Hyperglobulinemia is an independent risk factor for increased all-cause mortality in pSS patients. The risk of death is positively correlated with IgG level.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Sistema de Registros , China/epidemiologia
11.
Funct Integr Genomics ; 22(6): 1411-1431, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36138269

RESUMO

The cellulose synthase gene superfamily contains cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which synthesize cellulose and hemicellulose in plant cell walls and play a crucial role in plant growth and development. However, the CesA/Csl gene family has not been reported in pepper. Therefore, the genome-wide research of the CaCesA/CaCsl gene family was conducted in pepper. In this study, a total of 39 CaCesA/CaCsls genes (10 CesAs genes and 29 Csls genes) were identified in pepper and unevenly distributed on 11 chromosomes. These CaCesA/Csls were divided into seven subfamilies (CesAs, CslAs, CslBs, CslCs, CslDs, CslEs, CslGs), and most of CaCesA/Csls genes are closely related to AtCesA/Csls genes. The cis-acting elements in the promoters of CaCesA/Csls genes are mainly related to hormone response and stress response. There are ten collinear gene pairs between the CesA/Csls gene family of pepper and Arabidopsis, and four fragment duplication gene pairs of the CaCesA/Csls genes were discovered. RNA-seq analysis shows that the majority of CaCesA/Csls are expressed in a variety of plant tissues, indicating that most CaCesA/Csls gene expression patterns are not organ-specific, and CaCslD1/D4 have the highest expression in anthers, followed by petal, ovary, and F9. RNA-seq analysis shows that most CaCesA/Csls are responsive to five hormones (IAA, GA3, ABA, SA, and MeJA). The tissue-specific expression analysis of the CaCslD1 gene shows that the CaCslD1 gene is expressed specifically in flowers. In the flower buds IV of cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system, CaCslD1 reach the highest expression respectively. However, the relative expression level of CaCslD1 in the fertile accessions is extremely significantly higher than in the sterile accessions. This study shows an overall understanding of the CaCesA/Csls gene family and provides a new insight for understanding the function of CaCslD1 in pollen development and exploring the fertility restoration of CMS in pepper.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biologia Computacional , Flores/genética , Flores/metabolismo , Arabidopsis/metabolismo , Fertilidade
12.
BMC Plant Biol ; 22(1): 564, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463134

RESUMO

BACKGROUND: Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is prevalent in the main wheat-producing regions of China, resulting in severe yield losses in recent years. Mining and utilization of resistant genes from wild relatives of wheat is the most environmentally sound measure to control disease. Aegilops geniculata Roth (2n = 2x = 28, UgUgMgMg) is an essential and valuable disease-resistance gene donor for wheat improvement as a close relative species. RESULTS: In this study, to validate powdery mildew resistance locus on chromosome 7Mg, two genetic populations were constructed and through crossing wheat - Ae. geniculata 7Mg disomic addition line NA0973-5-4-1-2-9-1 and 7Mg (7 A) alien disomic substitution line W16998 with susceptible Yuanfeng175 (YF175, authorized varieties from Shaanxi province in 2005), respectively. Cytological examination, in situ hybridization (ISH), and functional molecular markers analysis revealed that the plants carrying chromosome 7Mg showed high resistance to powdery mildew in both F1 and F2 generation at the seedling stage. Besides, 84 specific markers were developed to identify the plants carrying chromosome 7Mg resistance based on the specific-locus amplified fragment sequencing (SLAF-seq) technique. Among them, four markers were selected randomly to check the reliability in F2 segregating populations derived from YF175/NA0973-5-4-1-2-9-1 and YF175/W16998. In summary, the above analysis confirmed that a dominant high powdery mildew resistance gene was located on chromosome 7Mg of Ae. geniculata. CONCLUSION: The results provide a basis for mapping the powdery mildew resistance gene mapping on chromosome 7Mg and specific markers for their utilization in the future.


Assuntos
Aegilops , Triticum/genética , Reprodutibilidade dos Testes , Erysiphe , Biomarcadores , Cromossomos
13.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806057

RESUMO

Fusarium head blight (Fhb), powdery mildew, and stripe rust are major wheat diseases globally. Aegilops geniculata Roth (UgUgMgMg, 2n = 4x = 28), a wild relative of common wheat, is valuable germplasm of disease resistance for wheat improvement and breeding. Here, we report the development and characterization of two substitution accessions with high resistance to powdery mildew, stripe rust and Fhb (W623 and W637) derived from hybrid progenies between Ae. geniculata and hexaploid wheat Chinese Spring (CS). Fluorescence in situ hybridization (FISH), Genomic in situ hybridizations (GISH), and sequential FISH-GISH studies indicated that the two substitution lines possess 40 wheat chromosomes and 2 Ae. geniculata chromosomes. Furthermore, compared that the wheat addition line parent W166, the 2 alien chromosomes from W623 and W637 belong to the 7Mg chromosomes of Ae. geniculata via sequential FISH-GISH and molecular marker analysis. Nullisomic-tetrasomic analysis for homoeologous group-7 of wheat and FISH revealed that the common wheat chromosomes 7A and 7B were replaced in W623 and W637, respectively. Consequently, lines W623, in which wheat chromosomes 7A were replaced by a pair of Ae. geniculata 7Mg chromosomes, and W637, which chromosomes 7B were substituted by chromosomes 7Mg, with resistance to Fhb, powdery mildew, and stripe rust. This study has determined that the chromosome 7Mg from Ae. geniculata exists genes resistant to Fhb and powdery mildew.


Assuntos
Aegilops , Basidiomycota , Fusarium , Aegilops/genética , Basidiomycota/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Erysiphe , Fusarium/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
14.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269816

RESUMO

Leymus mollis (2n = 4x = 28, NsNsXmXm), a wild relative of common wheat (Triticum aestivum L.), carries numerous loci which could potentially be used in wheat improvement. In this study, line 17DM48 was isolated from the progeny of a wheat and L. mollis hybrid. This line has 42 chromosomes forming 21 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) demonstrated the presence of a pair chromosomes from the Ns genome of L. mollis. This pair substituted for wheat chromosome 2D, as shown by fluorescence in situ hybridization (FISH), DNA marker analysis, and hybridization to wheat 55K SNP array. Therefore, 17DM48 is a wheat-L. mollis 2Ns (2D) disomic substitution line. It shows longer spike and a high level of stripe rust resistance. Using specific-locus amplified fragment sequencing (SLAF-seq), 13 DNA markers were developed to identify and trace chromosome 2Ns of L. mollis in wheat background. This line provides a potential bridge germplasm for genetic improvement of wheat stripe rust resistance.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética
15.
BMC Plant Biol ; 21(1): 575, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872505

RESUMO

BACKGROUND: Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. RESULTS: In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat 'Chinese Spring' and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase I in the pollen mother cellsand the chromosomes were evenly distributed to opposite poles at meiotic anaphase I. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag-sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance. CONCLUSIONS: This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.


Assuntos
Aegilops/genética , Doenças das Plantas/genética , Triticum/genética , Aegilops/microbiologia , Ascomicetos/fisiologia , Basidiomycota/fisiologia , Cromossomos de Plantas , Análise Citogenética , Resistência à Doença/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Triticum/microbiologia
16.
Mol Breed ; 41(10): 60, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309315

RESUMO

Synthetic hexaploid wheat offers breeders ready access to potentially novel genetic variation in wild ancestral species. In this study, we crossed MY3478 (2n = 4x = 28, AABB) as the maternal parent with the stripe rust-resistant SY41 (2n = 2x = 14, DD) as the paternal parent to construct the new hexaploid wheat line NA0928 through natural allopolyploidization. Agronomic traits and the cytology of the S8-S9 generations of NA0928 were analyzed. Abundant variation in agronomic traits was observed among each strain of NA0928 in the S8 generation. Agronomic traits were superior in strains resistant to stripe rust compared with those of highly susceptible strains. The rank order of the coefficients of variation were tiller number (55.3%) > spike length (15.3%) > number of spikelets (13.9%) > plant height (8.7). Number of tillers and spike length are important traits in wheat breeding to improve yield. Cytological observation and fluorescence in situ hybridization showed that the chromosome number and configuration showed rich variation among NA0928 strains in the S9 generation. Chromosome number ranged from 36 to 44. Variation in chromosome karyotype was detected in the A and B subgenomes. Meiotic chromosome behavior in pollen mother cells and multicolor genomic in situ hybridization revealed that two new synthetic hexaploid wheat strains showed genetic stability; one strain was resistant to stripe rust and developed multiple tillers, and the other strain was susceptible to stripe rust, but both showed improved thousand-kernel weight (TKW) weight and produced multiple tillers. The two strains will be valuable germplasm resources for use in wheat breeding.

17.
Exp Lung Res ; 47(2): 67-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33238752

RESUMO

OBJECTIVE: Patients with idiopathic pulmonary fibrosis (IPF) are still suffering from unfavorable survival. BTB and CNC homology1 (Bach1) is a regulator of oxidative stress and participates in the pathogenesis of multiple lung diseases. Thus, this study aimed to determine the effect of Bach1 knockdown on fibrosis and inflammation in pulmonary fibrosis (PF) mice and cell models. METHODS: Bleomycin induced PF mice were constructed and treated with Bach1 siRNA adenovirus (BLM + Bach1 siRNA group), control siRNA adenovirus (BLM + Control siRNA group) or normal saline (BLM group), then lung tissues were collected for Bach1 expression detection, H&E staining and Masson's trichrome staining. Afterwards, collagen type I alpha 1 chain (COL1A1) and interleukin-6 (IL-6) expressions in serum and bronchoalveolar lavage fluid (BALF) were examined. Subsequently, mouse lung fibroblasts (MLFs) were collected from PF mice and treated with TGF-ß1 to construct PF cell model, which was treated with Bach1 siRNA adenovirus (TGF-ß1 + Bach1 siRNA group) and MAP kinase (ERK) inhibitor U0126 alone (TGF-ß1 + U0126 group) or in combination (TGF-ß1 + U0126 + Bach1 siRNA group), then alpha-smooth muscle actin (α-SMA), fibronectin 1 (Fn1), COL1A1, IL-6 expressions and cell viability were detected. RESULTS: Lung tissue Bach1 mRNA and protein expressions were upregulated in PF mice compared to control mice. Bach1 knockdown reduced lung fibrosis (displayed by Masson's trichrome staining) and inflammation (displayed by H&E staining), then downregulated serum and BALF expressions of COL1A1 and IL-6 in PF mice. Subsequently, in PF cell model, Bach1 knockdown blocked ERK pathway, but did not affect Smads, c-Jun N-terminal kinase (JNK) or thymoma viral proto-oncogene 1 (Akt) pathways. Further experiments revealed that Bach1 knockdown repressed cell viability, α-SMA, Fn1, IL-6 and COL1A1 expressions in PF cell model, then ERK inhibition by U0126 enhanced these effects. CONCLUSIONS: Bach1 is involved in the PF pathogenesis via modulating ERK signaling pathway.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fibrose Pulmonar Idiopática , Sistema de Sinalização das MAP Quinases , Animais , Bleomicina , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Fator de Crescimento Transformador beta1/metabolismo
18.
Phys Chem Chem Phys ; 23(4): 2906-2913, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475637

RESUMO

The success of fascinating graphene has motivated much interest in exploiting new two-dimensional (2D) carbon allotropes with excellent electronic and mechanical properties such as graphdiyne and penta-graphene. However, there are only very few reported structures for stable 2D all-sp3 carbon allotropes. Here, we proposed a new 2D all-sp3 carbon allotrope, named as TTH-carbon. Using first-principles calculations, we investigated its structure, stability, elastic constants, band structure, carrier mobility and optical properties. The results show that it exhibits good stability. Meanwhile, it possesses a total monolayer thickness of 1.35 Šand an indirect band gap of 3.23 eV, comparable to those of well-known penta-graphene (1.20 Šand 3.25 eV). The calculated mechanical and optical properties of TTH-carbon strongly depend on the crystal orientation. The mobilities of electrons and holes along the y direction are ∼3000 cm2 V-1 s-1, which are ten times of its carrier mobilities along the x direction and three times of that of black phosphorus (∼1000 cm2 V-1 s-1). The proposed structure richens the 2D all-sp3 carbon allotropes and its properties make it a promising material for nanoelectronic and photoelectronic devices.

19.
Pharmacol Res ; 152: 104603, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863867

RESUMO

Berberine (BBR), a naturally-occurring isoquinoline alkaloid isolated from several Chinese herbal medicines, has been widely used for the treatment of dysentery and colitis. However, its blood concentration was less than 1 %, and intestinal microflora-mediated metabolites of BBR were considered to be the important material basis for the bioactivities of BBR. Here, we investigated the anti-colitis activity and potential mechanism of oxyberberine (OBB), a novel gut microbiota metabolite of BBR, in DSS-induced colitis mice. Balb/C mice treated with 3 % DSS in drinking water to induce acute colitis were orally administrated with OBB once daily for 8 days. Clinical symptoms were analyzed, and biological samples were collected for microscopic, immune-inflammation, intestinal barrier function, and gut microbiota analysis. Results showed that OBB significantly attenuated DSS-induced clinical manifestations, colon shortening and histological injury in the mice with colitis, which achieved similar therapeutic effect to azathioprine (AZA) and was superior to BBR. Furthermore, OBB remarkably ameliorated colonic inflammatory response and intestinal epithelial barrier dysfunction. OBB appreciably inhibited TLR4-MyD88-NF-κB signaling pathway through down-regulating the protein expressions of TLR4 and MyD88, inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. Moreover, OBB markedly modulated the gut dysbiosis induced by DSS and restored the dysbacteria to normal level. Taken together, the result for the first time revealed that OBB effectively improved DSS-induced experimental colitis, at least partly through maintaining the colonic integrity, inhibiting inflammation response, and modulating gut microflora profile.


Assuntos
Anti-Inflamatórios/uso terapêutico , Berberina/análogos & derivados , Berberina/uso terapêutico , Colite/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Biotransformação , Ceco/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Masculino , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(33): E6857-E6866, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760978

RESUMO

The synaptonemal complex (SC), a structure highly conserved from yeast to mammals, assembles between homologous chromosomes and is essential for accurate chromosome segregation at the first meiotic division. In Drosophila melanogaster, many SC components and their general positions within the complex have been dissected through a combination of genetic analyses, superresolution microscopy, and electron microscopy. Although these studies provide a 2D understanding of SC structure in Drosophila, the inability to optically resolve the minute distances between proteins in the complex has precluded its 3D characterization. A recently described technology termed expansion microscopy (ExM) uniformly increases the size of a biological sample, thereby circumventing the limits of optical resolution. By adapting the ExM protocol to render it compatible with structured illumination microscopy, we can examine the 3D organization of several known Drosophila SC components. These data provide evidence that two layers of SC are assembled. We further speculate that each SC layer may connect two nonsister chromatids, and present a 3D model of the Drosophila SC based on these findings.


Assuntos
Drosophila melanogaster/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica/métodos , Complexo Sinaptonêmico/ultraestrutura , Animais , Feminino , Microscopia Imunoeletrônica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA