Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Ethnopharmacol ; 331: 118265, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677579

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW: This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS: With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS: Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION: The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.


Assuntos
Docetaxel , Resistencia a Medicamentos Antineoplásicos , Medicina Tradicional Chinesa , Neoplasias da Próstata , Humanos , Masculino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Medicina Tradicional Chinesa/métodos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Asian J Androl ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38157428

RESUMO

Prostate cancer (PCa) is one of the most common malignancies in males worldwide, and its development and progression involve the regulation of multiple metabolic pathways. Alterations in lipid metabolism affect the proliferation and metastatic capabilities of PCa cells. Cancer cells increase lipid synthesis and regulate fatty acid oxidation to meet their growth and energy demands. Similarly, changes occur in amino acid metabolism in PCa. Cancer cells exhibit an increased demand for specific amino acids, and they regulate amino acid transport and metabolic pathways to fulfill their proliferation and survival requirements. These changes are closely associated with disease progression and treatment response in PCa cells. Therefore, a comprehensive investigation of the metabolic characteristics of PCa is expected to offer novel insights and approaches for the early diagnosis and treatment of this disease.

3.
Trends Cancer ; 8(8): 698-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35581130

RESUMO

Non-muscle invasive bladder cancer, a disease with the oldest immunotherapeutic standard of care, has seen recent improvements in treatment via the application of checkpoint blocking antibodies. Unfortunately, response rates to programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) blocking antibodies remain low despite stratification by biomarkers. Sharing common biology with T cells but lacking true antigen-specificity and responding earlier to tumorigenic threats, natural killer (NK) cells present an ideal target for combination immunotherapies. NK-targeted immunotherapies under clinical investigation, including anti-NKG2A antibodies, interleukin agonists, and engineered viral vectors, hold promise in altering the immunotherapeutic landscape in bladder cancer and will be the focus of this review.


Assuntos
Neoplasias da Bexiga Urinária , Anticorpos Bloqueadores/uso terapêutico , Humanos , Imunoterapia , Células Matadoras Naturais , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia
4.
Neuron ; 109(2): 257-272.e14, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33238137

RESUMO

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Encéfalo/fisiologia , Bases de Dados Genéticas , Redes Reguladoras de Genes/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Bases de Dados Genéticas/tendências , Drosophila melanogaster , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Análise de Sequência de RNA/métodos
5.
J Clin Invest ; 128(12): 5647-5662, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30352428

RESUMO

Tumor-associated myeloid cells maintain immunosuppressive microenvironments within tumors. Identification of myeloid-specific receptors to modulate tumor-associated macrophage and myeloid-derived suppressor cell (MDSC) functions remains challenging. The leukocyte immunoglobulin-like receptor B (LILRB) family members are negative regulators of myeloid cell activation. We investigated how LILRB targeting could modulate tumor-associated myeloid cell function. LILRB2 antagonism inhibited receptor-mediated activation of SHP1/2 and enhanced proinflammatory responses. LILRB2 antagonism also inhibited AKT and STAT6 activation in the presence of M-CSF and IL-4. Transcriptome analysis revealed that LILRB2 antagonism altered genes involved in cell cytoskeleton remodeling, lipid/cholesterol metabolism, and endosomal sorting pathways, as well as changed differentiation gene networks associated with inflammatory myeloid cells as opposed to their alternatively activated phenotype. LILRB2 blockade effectively suppressed granulocytic MDSC and Treg infiltration and significantly promoted in vivo antitumor effects of T cell immune checkpoint inhibitors. Furthermore, LILRB2 blockade polarized tumor-infiltrating myeloid cells from non-small cell lung carcinoma tumor tissues toward an inflammatory phenotype. Our studies suggest that LILRB2 can potentially act as a myeloid immune checkpoint by reprogramming tumor-associated myeloid cells and provoking antitumor immunity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Células Supressoras Mieloides/imunologia , Proteínas de Neoplasias/imunologia , Receptores Imunológicos/imunologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Citoesqueleto/genética , Citoesqueleto/imunologia , Citoesqueleto/patologia , Redes Reguladoras de Genes/imunologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Células Supressoras Mieloides/patologia , Proteínas de Neoplasias/genética , Receptores Imunológicos/genética
6.
Biomaterials ; 31(34): 9048-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20800279

RESUMO

Diabetes can diminish the responsiveness to angiogenic factors (e.g., VEGF) important for wound healing and the treatment of ischemic diseases, and this study investigated the hypothesis that this effect can be reversed by altering Notch signaling. Aortic endothelial cells (ECs) isolated from diabetic mice demonstrated reduced sprouting capability in vitro, but adding a Notch inhibitor (DAPT) led to cell-density and VEGF-dose dependent enhancement of proliferation, migration and sprouting, in both 2-D and 3-D cultures, as compared to VEGF alone. The in vivo effects of VEGF and DAPT were tested in the ischemic hind limbs of diabetic mice. Combining VEGF and DAPT delivery resulted in increased blood vessel density (∼150%) and improved tissue perfusion (∼160%), as compared to VEGF alone. To examine if DAPT would interfere with vessel maturation, DAPT was also delivered with a combination of VEGF and platelet derived growth factor (PDGF). DAPT and PDGF did not interfere with the effects of the other, and highly functional and mature networks of vessels could be formed with appropriate delivery. In summary, modulating Notch signaling enhances neovascularization and perfusion recovery in diabetic mice suffering from ischemia, suggesting this approach could have utility for human diabetics.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Reperfusão , Transdução de Sinais , Animais , Aorta/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Dipeptídeos/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Membro Posterior/irrigação sanguínea , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Biomaterials ; 30(25): 4085-93, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19481797

RESUMO

Promoting angiogenesis via delivery of vascular endothelial growth factor (VEGF) and other angiogenic factors is both a potential therapy for cardiovascular diseases and a critical aspect for tissue regeneration. The recent demonstration that VEGF signaling is modulated by the Notch signaling pathway, however, suggests that inhibiting Notch signaling may enhance regional neovascularization, by altering the responsiveness of local endothelial cells to angiogenic stimuli. We tested this possibility with in vitro assays using human endothelial cells, as well as in a rodent hindlimb ischemia model. Treatment of cultured human endothelial cells with DAPT, a gamma secretase inhibitor, increased cell migration and sprout formation in response to VEGF stimulation with a biphasic dependence on DAPT concentration. Further, delivery of an appropriate combination of DAPT and VEGF from an injectable alginate hydrogel system into ischemic hindlimbs led to a faster recovery of blood flow than VEGF or DAPT alone; perfusion levels reached 80% of the normal level by week 4 with combined DAPT and VEGF delivery. Direct intramuscular or intraperitoneal injection of DAPT did not result in the same level of improvement, suggesting that appropriate presentation of DAPT (gel delivery) is important for its activity. DAPT delivery from the hydrogels also did not lead to any adverse side effects, in contrast to systemic introduction of DAPT. Altogether, these results suggest a new approach to promote angiogenesis by controlling Notch signaling, and may provide new options to treat patients with diseases that diminish angiogenic responsiveness.


Assuntos
Neovascularização Fisiológica , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alginatos/química , Animais , Células Cultivadas , Dipeptídeos/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Membro Posterior/irrigação sanguínea , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Isquemia/metabolismo , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Receptores Notch/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vinculina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA