Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(15): 2797-2814.e11, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35679869

RESUMO

mRNA function is influenced by modifications that modulate canonical nucleobase behavior. We show that a single modification mediates distinct impacts on mRNA translation in a position-dependent manner. Although cytidine acetylation (ac4C) within protein-coding sequences stimulates translation, ac4C within 5' UTRs impacts protein synthesis at the level of initiation. 5' UTR acetylation promotes initiation at upstream sequences, competitively inhibiting annotated start codons. Acetylation further directly impedes initiation at optimal AUG contexts: ac4C within AUG-flanking Kozak sequences reduced initiation in base-resolved transcriptome-wide HeLa results and in vitro utilizing substrates with site-specific ac4C incorporation. Cryo-EM of mammalian 80S initiation complexes revealed that ac4C in the -1 position adjacent to an AUG start codon disrupts an interaction between C and hypermodified t6A at nucleotide 37 of the initiator tRNA. These findings demonstrate the impact of RNA modifications on nucleobase function at a molecular level and introduce mRNA acetylation as a factor regulating translation in a location-specific manner.


Assuntos
Citidina , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Animais , Códon de Iniciação , Citidina/análogos & derivados , Citidina/genética , Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nano Lett ; 24(14): 4256-4264, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557048

RESUMO

Biological materials exhibit fascinating mechanical properties for intricate interactions at multiple interfaces to combine superb toughness with wondrous strength and stiffness. Recently, strong interlayer entanglement has emerged to replicate the powerful dissipation of natural proteins and alleviate the conflict between strength and toughness. However, designing intricate interactions in a strong entanglement network needs to be further explored. Here, we modulate interlayer entanglement by introducing multiple interactions, including hydrogen and ionic bonding, and achieve ultrahigh mechanical performance of graphene-based nacre fibers. Two essential modulating trends are directed. One is modulating dynamic hydrogen bonding to improve the strength and toughness up to 1.58 GPa and 52 MJ/m3, simultaneously. The other is tailoring ionic coordinating bonding to raise the strength and stiffness, reaching 2.3 and 253 GPa. Modulating various interactions within robust entanglement provides an effective approach to extend performance limits of bioinspired nacre and optimize multiscale interfaces in diverse composites.

4.
J Virol ; 97(1): e0178822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36519897

RESUMO

Despite the development of highly effective hepatitis C virus (HCV) treatments, an effective prophylactic vaccine is still lacking. HCV infection is mediated by its envelope glycoproteins, E1 and E2, during the entry process, with E2 binding to cell receptors and E1 mediating endosomal fusion. The structure of E1E2 has only been partially resolved by X-ray crystallography of the core domain of E2 protein (E2c) and its complex with various neutralizing antibodies. Structural understanding of the E1E2 heterodimer in its native form can advance the design of candidates for HCV vaccine development. Here, we analyze the structure of the recombinant HCV E1E2 heterodimer with the aid of well-defined monoclonal anti-E1 and E2 antibodies, as well as a small-molecule chlorcyclizine-diazirine-biotin that can target and cross-link the putative E1 fusion domain. Three-dimensional (3D) models were generated after extensive 2D classification analysis with negative-stain single-particle data sets. We modeled the available crystal structures of the E2c and Fabs into 3D volumes of E1E2-Fab complexes based on the shape and dimension of the domain density. The E1E2 heterodimer exists in monomeric form and consists of a main globular body, presumably depicting the E1 and E2 stem/transmembrane domain, and a protruding structure representing the E2c region, based on anti-E2 Fab binding. At low resolution, a model generated from negative-stain analysis revealed the unique binding and orientation of individual or double Fabs onto the E1 and E2 components of the complex. Cryo-electron microscopy (cryo-EM) of the double Fab complexes resulted in a refined structural model of the E1E2 heterodimer, presented here. IMPORTANCE Recombinant HCV E1E2 heterodimer is being developed as a vaccine candidate. Using electron microscopy, we demonstrated unique features of E1E2 in complex with various neutralizing antibodies and small molecule inhibitors that are important to understanding its antigenicity and induction of immune response.


Assuntos
Hepacivirus , Proteínas do Envelope Viral , Humanos , Anticorpos Neutralizantes/química , Microscopia Crioeletrônica , Elétrons , Hepacivirus/fisiologia , Hepatite C , Imageamento Tridimensional , Proteínas do Envelope Viral/química , Conformação Proteica
5.
EMBO Rep ; 23(4): e52775, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35201641

RESUMO

Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT-B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT-B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT-B complex components cooperate in multiciliogenesis.


Assuntos
Corpos Basais , Infertilidade Masculina , Proteínas de Membrana , Proteínas de Ligação a RNA , Animais , Corpos Basais/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Xenopus laevis
6.
Nano Lett ; 23(8): 3352-3361, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052245

RESUMO

Natural materials teach that mechanical dissipative interactions relieve the conflict between strength and toughness and enable fabrication of strong yet tough artificial materials. Replicating natural nacre structure has yielded rich biomimetic materials; however, stronger interlayer dissipation still waits to be exploited to extend the performance limits of artificial nacre materials. Here, we introduce strong entanglement as a new artificial interlayer dissipative mechanism and fabricate entangled nacre materials with superior strength and toughness, across molecular to nanoscale nacre structures. The entangled graphene nacre fibers achieved high strength of 1.2 GPa and toughness of 47 MJ/m3, and films reached 1.5 GPa and 25 MJ/m3. Experiments and simulations reveal that strong entanglement can effectively dissipate interlayer energy to relieve the conflict between strength and toughness, acting as natural folded proteins. The strong interlayer entanglement opens up a new path for designing stronger and tougher artificial materials to mimic but surpass natural materials.

7.
Virol J ; 20(1): 292, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072961

RESUMO

BACKGROUND: In the era of antiretroviral therapy (ART), central nervous system (CNS) complications in patients with human immunodeficiency virus (HIV) infection are sometimes associated with cerebrospinal fluid (CSF) viral escape. Here, we reported a case of persistent CNS viral escape with recurrent symptomatic encephalitis, which had ultimate stabilization achieved by a combination of ART adjustment and corticosteroids. CASE PRESENTATION: A 27-year-old man with HIV infection complained of recurrent headaches during the last year. His magnetic resonance imaging (MRI) presented diffused bilateral white matter lesions, and laboratory tests confirmed elevated CSF protein level, lymphocytic pleocytosis, and detectable CSF HIV RNA (774 copies/mL). Plasma HIV RNA was well suppressed with tenofovir, lamivudine, and lopinavir/ritonavir. Prednisone 60 mg once daily was initiated to reduce intracranial inflammation, followed by a good clinical response, with CSF HIV RNA still detectable (31.1 copies/mL). During the gradual tapering of prednisone, his headache relapsed, and booming viral loads were detected in both CSF (4580 copies/mL) and plasma (340 copies/mL) with consistent drug-resistant mutations. Thereupon, prednisone was resumed and the ART regimen was switched to zidovudine, lamivudine, and dolutegravir according to drug resistance tests. Persistent clinical recovery of symptoms, neuroimaging, and laboratory abnormalities were observed in the follow-up visits. CONCLUSION: CSF and plasma HIV RNA and further drug resistance tests should be monitored in HIV-infected patients with neurologic symptoms, as opportunistic infections or tumors can be ruled out. ART optimization using a sensitive regimen may be crucial for addressing CSF viral escape and the related encephalitis.


Assuntos
Fármacos Anti-HIV , Encefalite , Infecções por HIV , Adulto , Humanos , Masculino , Fármacos Anti-HIV/farmacologia , Líquido Cefalorraquidiano , Encefalite/complicações , Encefalite/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Lamivudina/uso terapêutico , Prednisona/uso terapêutico , RNA , RNA Viral/genética , Carga Viral
8.
Bioconjug Chem ; 33(5): 969-981, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522527

RESUMO

Lipid-based formulations provide a nanotechnology platform that is widely used in a variety of biomedical applications because it has several advantageous properties including biocompatibility, reduced toxicity, relative ease of surface modifications, and the possibility for efficient loading of drugs, biologics, and nanoparticles. A combination of lipid-based formulations with magnetic nanoparticles such as iron oxide was shown to be highly advantageous in a growing number of applications including magnet-mediated drug delivery and image-guided therapy. Currently, lipid-based formulations are prepared by multistep protocols. Simplification of the current multistep procedures can lead to a number of important technological advantages including significantly decreased processing time, higher reaction yield, better product reproducibility, and improved quality. Here, we introduce a one-pot, single-step synthesis of drug-loaded magnetic multimicelle aggregates (MaMAs), which is based on controlled flow infusion of an iron oxide nanoparticle/lipid mixture into an aqueous drug solution under ultrasonication. Furthermore, we prepared molecular-targeted MaMAs by directional antibody conjugation through an Fc moiety using Cu-free click chemistry. Fluorescence imaging and quantification confirmed that antibody-conjugated MaMAs showed high cell-specific targeting that was enhanced by magnetic delivery.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Lipídeos , Fenômenos Magnéticos , Nanopartículas/química , Preparações Farmacêuticas , Reprodutibilidade dos Testes
9.
Anal Chem ; 92(19): 13434-13442, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32865398

RESUMO

Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals (CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and analysis. Samples of CNCs were prepared on TEM grids in a single laboratory, and detailed data acquisition and analysis protocols were provided to participants. CNCs were imaged and the size of individual particles was analyzed in 10 participating laboratories that represent a cross section of academic, industrial, and government laboratories with varying levels of experience with imaging CNCs. The data for each laboratory were fit to a skew normal distribution that accommodates the variability in central location and distribution width and asymmetries for the various datasets. Consensus values were obtained by modeling the variation between laboratories using a skew normal distribution. This approach gave consensus distributions with values for mean, standard deviation, and shape factor of 95.8, 38.2, and 6.3 nm for length and 7.7, 2.2, and 2.9 nm for width, respectively. Comparison of the degree of overlap between distributions for individual laboratories indicates that differences in imaging resolution contribute to the variation in measured widths. We conclude that the selection of individual CNCs for analysis and the variability in CNC agglomeration and staining are the main factors that lead to variations in measured length and width between laboratories.

10.
Langmuir ; 36(10): 2729-2739, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32078330

RESUMO

Elucidating the structure-activity relationships between biomolecules and hydroxyapatite (HAP) is essential to understand bone mineralization mechanisms, develop HAP-based implants, and design drug delivery vectors. Here, four peptides identified by phage display were selected as model HAP-binding peptides (HBPs) to examine the effects of primary amino acid sequence, phosphorylation of serine, presence of charged amino acid residues, and net charge of the peptide on (1) HAP-binding affinity, (2) secondary conformation, and (3) HAP nucleation and crystal growth. Binding affinities were determined by obtaining adsorption isotherms by mass depletion, and the conformations of the peptides in solution and bound states were observed by circular dichroism. Results showed that the magnitude of the net charge primarily controlled binding affinity, with little dependence on the other HBP features. The binding affinity and conformation results were in good agreement with our previous molecular dynamics simulation results, thus providing an excellent benchmark for the simulations. Transmission electron microscopy was used to explore the effect of these HBPs on calcium phosphate (Ca-PO4) nucleation and growth. Results indicated that HBPs may inhibit nucleation of Ca-PO4 nanoparticles and their phase transition to crystalline HAP, as well as control crystal growth rates in specific crystallographic directions, thus changing the classical needle-like morphology of inorganically grown HAP crystals to a biomimetic plate-like morphology.


Assuntos
Durapatita , Peptídeos , Adsorção , Sequência de Aminoácidos , Relação Estrutura-Atividade
11.
Phys Chem Chem Phys ; 20(18): 13047-13056, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29713719

RESUMO

The nanoscopic structural and thermodynamic basis of biomolecule-regulated assembly and crystallization of inorganic solids have a tremendous impact on the rational design of novel functional nanomaterials, but are concealed by many difficulties in molecular-level characterization. Here we demonstrate that the free energy calculation approach, enabled by combining advanced molecular simulation techniques, can unravel the structural and energetic mechanisms of protein-mediated inorganic solid nucleation. It is observed that osteocalcin (OCN), an important non-collagenous protein involved in regulating bone formation, promotes the growth of nanosized calcium phosphate (CaP) ion clusters from a supersaturated solution. Free energy calculation by umbrella sampling indicates that this effect by OCN is prominent at the scale of 1 to 3 nm ion-association complexes (IACs). The binding interactions between gamma-carboxyl glutamate and the C-terminal and, interestingly, the arginine side chains of OCN and IACs stabilize under-coordinated IACs, thus promoting their growth. The promoter effect of OCN on the enlargement and further aggregation of IACs into cluster assemblies of tens of nm are confirmed by conventional molecular dynamics simulation and dynamic light scattering experiments. To the best of our knowledge, this is the first time that the free energy landscape of the early stages of CaP nucleation is shown. The free energy change as a function of IAC size shares the feature of decreasing monotonically as shown previously for the calcium carbonate system. Therefore, the nucleation of both these major biominerals apparently involves an initial phase of liquid-like ionic aggregates. The structural and thermodynamic information regarding OCN-CaP interactions amplifies the current understanding of biomineralization mechanisms at the nanoscale, with general relevance to biomolecule-tuned fabrication of inorganic materials.

12.
Phys Chem Chem Phys ; 20(3): 1513-1523, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29260165

RESUMO

Bone is a hierarchical biocomposite material in which a collagen fibril matrix self-assembled in a three-dimensional (3-D) pseudohexagonal array controls many important processes in mineralization such as providing the pathways by which calcium and phosphate species are delivered and a template for the earliest nucleation sites, determining the spatial distribution of the mineral and the topology for binding of associated non-collagenous proteins. However, the structural characteristics of collagen molecules in the fibril remain unclear at the atomic level. Here we performed the first large-scale molecular dynamics simulations to provide a comprehensive all-atom structural analysis of the entire fibril of Type I collagen including intra-fibrillar water distribution. We found that the ideal fibril structure is preserved in specific sites where the earliest nucleation occurs, but is severely distorted in areas that mineralize later. In detail, the ideal pseudohexagonal structure is well-preserved in the overlap zone (c1, c2 and b bands), in the a bands of the hole zone but is severely distorted at the hole/overlap transition (d and c3 bands). As a result, the expected uniform "channel," formed by connecting holes in adjacent unit cells along the b-axis, and having dimensions of 1.5 nm height along the a-axis and width of 40 nm along the c-axis is not formed. The expected uniform channel of 1.5 nm height is preserved only in the a bands in a narrow sub-channel region only 5.8 nm wide. At the hole/overlap transition, an irregular, tortuous sub-channel of widely varying dimensions (∼1.8-4.0 nm height × âˆ¼3.0 nm width) is formed. The well-defined sub-channel in the a bands along with their preferred orientation of charged amino acid residues could facilitate faster molecular diffusion than the tortuous sub-channels and ionic interactions, thus providing the first nucleation sites. Intra-fibrillar water occupies nano-spaces and shows low density (∼0.7 g cm-3), which should promote dehydration of ion species. These results provide the first atomic-level understanding of the structure of the collagen fibril and the properties of the aqueous compartments within the fibril, which offer a physical, chemical and steric explanation for calcium phosphate infiltration paths and for the initiation of mineralization at the a band collagen fibril. The mechanism revealed here for the observed specificity of collagen biomineralization in bone formation ultimately contributes to the biochemical and biomechanical functions of the skeleton.


Assuntos
Osso e Ossos/metabolismo , Calcificação Fisiológica/fisiologia , Colágeno Tipo I/química , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Colágeno Tipo I/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação Proteica
13.
J Comput Chem ; 35(1): 70-81, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24272540

RESUMO

The unique, plate-like morphology of hydroxyapatite (HAP) nanocrystals in bone lends to the hierarchical structure and functions of bone. Proteins enriched in phosphoserine (Ser-OPO3) and glutamic acid (Glu) residues have been proposed to regulate crystal morphology; however, the atomic-level mechanisms remain unclear. Previous molecular dynamics studies addressing biomineralization have used force fields with limited benchmarking, especially at the water/mineral interface, and often limited sampling for the binding free energy profile. Here, we use the umbrella sampling/weighted histogram analysis method to obtain the adsorption free energy of Ser-OPO3 and Glu on HAP (100) and (001) surfaces to understand organic-mediated crystal growth. The calculated organic-water-mineral interfacial energies are carefully benchmarked to density functional theory calculations, with explicit inclusion of solvating water molecules around the adsorbate plus the Poisson-Boltzmann continuum model for long-range solvation effects. Both amino acids adsorb more strongly on the HAP (100) face than the (001) face. Growth rate along the [100] direction should then be slower than in the [001] direction, resulting in plate-like crystal morphology with greater surface area for the (100) than the (001) face, consistent with bone HAP crystal morphology. Thus, even small molecules are capable of regulating bone crystal growth by preferential adsorption in specific directions. Furthermore, Ser-OPO3 is a more effective growth modifier by adsorbing more strongly than Glu on the (100) face, providing one possible explanation for the energetically expensive process of phosphorylation of some proteins involved in bone biomineralization. The current results have broader implications for designing routes for biomimetic crystal synthesis.


Assuntos
Durapatita/química , Ácido Glutâmico/química , Fosfosserina/química , Teoria Quântica , Adsorção , Propriedades de Superfície
14.
Nat Commun ; 15(1): 409, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195741

RESUMO

Macroscopic fibres assembled from two-dimensional (2D) nanosheets are new and impressing type of fibre materials besides those from one-dimensional (1D) polymers, such as graphene fibres. However, the preparation and property-enhancing technologies of these fibres follow those from 1D polymers by improving the orientation along the fibre axis, leading to non-optimized microstructures and low integrated performances. Here, we show a concept of bidirectionally promoting the assembly order, making graphene fibres achieve synergistically improved mechanical and thermal properties. Concentric arrangement of graphene oxide sheets in the cross-section and alignment along fibre axis are realized by multiple shear-flow fields, which bidirectionally promotes the sheet-order of graphene sheets in solid fibres, generates densified and crystalline graphitic structures, and produces graphene fibres with ultrahigh modulus (901 GPa) and thermal conductivity (1660 W m-1 K-1). We believe that the concept would enhance both scientific and technological cognition of the assembly process of 2D nanosheets.

15.
Sci Adv ; 10(17): eadm7737, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669331

RESUMO

Flat membranes ubiquitously transform into mysterious complex shapes in nature and artificial worlds. Behind the complexity, clear determinative deformation modes have been continuously found to serve as basic application rules but remain unfulfilled. Here, we decipher two elemental deformation modes of thin membranes, spontaneous scrolling and folding as passing through shrinking channels. We validate that these two modes rule the deformation of membranes of a wide thickness range from micrometer to atomic scale. Their occurrence and the determinative fold number quantitatively correlate with the Föppl-von Kármán number and shrinkage ratio. The unveiled determinative deformation modes can guide fabricating foldable designer microrobots and delicate structures of two-dimensional sheets and provide another mechanical principle beyond genetic determinism in biological morphogens.

16.
Turk J Gastroenterol ; 34(10): 1035-1040, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37681265

RESUMO

BACKGROUND/AIMS: The risk of hepatitis B virus reactivation in patients with a previously resolved hepatitis B virus infection on therapy with corticosteroids and conventional synthesis immunosuppressants for kidney disease has not been well described. MATERIALS AND METHODS: We performed a retrospective study on the risk of hepatitis B virus reactivation in patients with a previously resolved hepatitis B virus infection on therapy with corticosteroids and conventional synthesis immunosuppressants for kidney disease between January 2012 and December 2021 in the Department of Nephrology at Ruijin Hospital. RESULTS: A total of 258 patients with a previously resolved hepatitis B virus infection [all treated with high-dose corticosteroids, of whom 192 were receiving corticosteroids combined with conventional synthesis immunosuppressant therapy, including cyclophosphamide (155), cyclosporine A (14), mycophenolate mofetil (14), and tacrolimus (9)] were enrolled. During a mean follow-up time of 21.66 months (range 9-70 months), hepatitis B virus reactivation was not observed in these patients. CONCLUSIONS: Among patients with a previously resolved hepatitis B virus infection on therapy with corticosteroids and conventional synthesis immunosuppressants for kidney disease, hepatitis B virus reactivation was not common and severe, suggesting that universal prophylaxis may not be justified or cost-effective in this clinical setting.


Assuntos
Hepatite B , Nefropatias , Humanos , Vírus da Hepatite B/fisiologia , Imunossupressores/uso terapêutico , Estudos Retrospectivos , Ativação Viral , Corticosteroides/uso terapêutico , Corticosteroides/farmacologia , Antígenos de Superfície da Hepatite B , Antivirais/uso terapêutico
17.
Nanomicro Lett ; 16(1): 58, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112845

RESUMO

Highly thermally conductive graphitic film (GF) materials have become a competitive solution for the thermal management of high-power electronic devices. However, their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety. Here, we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks (LNS), which reveals a bubbling process characterized by "permeation-diffusion-deformation" phenomenon. To overcome this long-standing structural weakness, a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film (GF@Cu) with seamless heterointerface. This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K. Moreover, GF@Cu maintains high thermal conductivity up to 1088 W m-1 K-1 with degradation of less than 5% even after 150 LNS cycles, superior to that of pure GF (50% degradation). Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.

18.
Cell Rep Med ; 4(11): 101253, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918405

RESUMO

Colonization of the gut and airways by pathogenic bacteria can lead to local tissue destruction and life-threatening systemic infections, especially in immunologically compromised individuals. Here, we describe an mRNA-based platform enabling delivery of pathogen-specific immunoglobulin A (IgA) monoclonal antibodies into mucosal secretions. The platform consists of synthetic mRNA encoding IgA heavy, light, and joining (J) chains, packaged in lipid nanoparticles (LNPs) that express glycosylated, dimeric IgA with functional activity in vitro and in vivo. Importantly, mRNA-derived IgA had a significantly greater serum half-life and a more native glycosylation profile in mice than did a recombinantly produced IgA. Expression of an mRNA encoded Salmonella-specific IgA in mice resulted in intestinal localization and limited Peyer's patch invasion. The same mRNA-LNP technology was used to express a Pseudomonas-specific IgA that protected from a lung challenge. Leveraging the mRNA antibody technology as a means to intercept bacterial pathogens at mucosal surfaces opens up avenues for prophylactic and therapeutic interventions.


Assuntos
Mucosa , Nódulos Linfáticos Agregados , Camundongos , Animais , Imunoglobulina A , Anticorpos Monoclonais
19.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787650

RESUMO

Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Organogênese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/química , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Humanos , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Proteínas Proto-Oncogênicas/metabolismo , Especificidade por Substrato , Xenopus , Proteínas de Xenopus/química , Quinase 1 Polo-Like
20.
Adv Mater ; 34(28): e2201867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35510758

RESUMO

Highly thermally conductive carbon fibers (CFs) have become an important material to meet the increasing demand for efficient heat dissipation. To date, high thermal conductivity has been only achieved in specific pitch-based CFs with high crystallinity. However, obtaining high graphitic crystallinity and high thermal conductivity beyond pitch-CFs remains a grand challenge. Here, a 2D-topology-seeded graphitization method is presented to mediate the topological incompatibility in graphitization by seeding 2D graphene oxide (GO) sheets into the polyacrylonitrile (PAN) precursor. Strong mechanical strength and high thermal conductivity up to 850 W m- 1 K-1 are simultaneously realized, which are one order of magnitude higher in conductivity than commercial PAN-based CFs. The self-oxidation and seeded graphitization effect generate large crystallite size and high orientation to far exceed those of conventional CFs. Topologically seeded graphitization, verified in experiments and simulations, allows conversion of the non-graphitizable into graphitizable materials by incorporating 2D seeds. This method extends the preparation of highly thermally conductive CFs, which has great potential for lightweight thermal-management materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA