Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 72(2): 300-321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37937831

RESUMO

Neuropsychiatric complications including depression and cognitive decline develop in the years after traumatic brain injury (TBI), negatively affecting quality of life. Microglial and type 1 interferon (IFN-I) responses are associated with the transition from acute to chronic neuroinflammation after diffuse TBI in mice. Thus, the purpose of this study was to determine if impaired neuronal homeostasis and increased IFN-I responses intersected after TBI to cause cognitive impairment. Here, the RNA profile of neurons and microglia after TBI (single nucleus RNA-sequencing) with or without microglia depletion (CSF1R antagonist) was assessed 7 dpi. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and synaptic migration and increases in RhoGDI and PTEN signaling (Ingenuity Pathway Analysis). Microglial depletion reversed 50% of TBI-induced gene changes in cortical neurons depending on subtype. Moreover, the microglial RNA signature 7 dpi was associated with increased stimulator of interferon genes (STING) activation and IFN-I responses. Therefore, we sought to reduce IFN-I signaling after TBI using STING knockout mice and a STING antagonist, chloroquine (CQ). TBI-associated cognitive deficits in novel object location and recognition (NOL/NOR) tasks at 7 and 30 dpi were STING dependent. In addition, TBI-induced STING expression, microglial morphological restructuring, inflammatory (Tnf, Cd68, Ccl2) and IFN-related (Irf3, Irf7, Ifi27) gene expression in the cortex were attenuated in STINGKO mice. CQ also reversed TBI-induced cognitive deficits and reduced TBI-induced inflammatory (Tnf, Cd68, Ccl2) and IFN (Irf7, Sting) cortical gene expression. Collectively, reducing IFN-I signaling after TBI with STING-dependent interventions attenuated the prolonged microglial activation and cognitive impairment.


Assuntos
Lesões Encefálicas Traumáticas , Interferon Tipo I , Camundongos , Animais , Interferon Tipo I/metabolismo , Microglia/metabolismo , Qualidade de Vida , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Cognição , Neurônios/metabolismo , RNA/metabolismo , Camundongos Endogâmicos C57BL
2.
J Neurosci ; 42(48): 9082-9096, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36257689

RESUMO

Traumatic brain injury (TBI) is associated with chronic psychiatric complications and increased risk for development of neurodegenerative pathology. Aged individuals account for most TBI-related hospitalizations and deaths. Nonetheless, neurobiological mechanisms that underlie worsened functional outcomes after TBI in the elderly remain unclear. Therefore, this study aimed to identify pathways that govern differential responses to TBI with age. Here, adult (2 months of age) and aged (16-18 months of age) male C57BL/6 mice were subjected to diffuse brain injury (midline fluid percussion), and cognition, gliosis, and neuroinflammation were determined 7 or 30 d postinjury (dpi). Cognitive impairment was evident 7 dpi, independent of age. There was enhanced morphologic restructuring of microglia and astrocytes 7 dpi in the cortex and hippocampus of aged mice compared with adults. Transcriptional analysis revealed robust age-dependent amplification of cytokine/chemokine, complement, innate immune, and interferon-associated inflammatory gene expression in the cortex 7 dpi. Ingenuity pathway analysis of the transcriptional data showed that type I interferon (IFN) signaling was significantly enhanced in the aged brain after TBI compared with adults. Age prolonged inflammatory signaling and microgliosis 30 dpi with an increased presence of rod microglia. Based on these results, a STING (stimulator of interferon genes) agonist, DMXAA, was used to determine whether augmenting IFN signaling worsened cortical inflammation and gliosis after TBI. DMXAA-treated Adult-TBI mice showed comparable expression of myriad genes that were overexpressed in the cortex of Aged-TBI mice, including Irf7, Clec7a, Cxcl10, and Ccl5 Overall, diffuse TBI promoted amplified IFN signaling in aged mice, resulting in extended inflammation and gliosis.SIGNIFICANCE STATEMENT Elderly individuals are at higher risk of complications following traumatic brain injury (TBI). Individuals >70 years old have the highest rates of TBI-related hospitalization, neurodegenerative pathology, and death. Although inflammation has been linked with poor outcomes in aging, the specific biological pathways driving worsened outcomes after TBI in aging remain undefined. In this study, we identify amplified interferon-associated inflammation and gliosis in aged mice following TBI that was associated with persistent inflammatory gene expression and microglial morphologic diversity 30 dpi. STING (stimulator of interferon genes) agonist DMXAA was used to demonstrate a causal link between augmented interferon signaling and worsened neuroinflammation after TBI. Therefore, interferon signaling may represent a therapeutic target to reduce inflammation-associated complications following TBI.


Assuntos
Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Animais , Camundongos , Masculino , Gliose/etiologia , Gliose/metabolismo , Camundongos Endogâmicos C57BL , Interferons , Lesões Encefálicas Difusas/metabolismo , Lesões Encefálicas Difusas/patologia , Microglia/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Inflamação/metabolismo
3.
Glia ; 70(5): 913-934, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35061297

RESUMO

Microglia, the innate immune cells of the brain, develops a pro-inflammatory, "primed" profile with age. Using single-cell RNA-sequencing, we confirmed hippocampal microglia of aged mice (18 m.o.) had an amplified (4 h) and prolonged (24 h) neuroinflammatory response to peripheral lipopolysaccharide (LPS) challenge compared to adults (2 m.o.). Overall, there were several unique cell-, age-, and time-dependent differences in the clusters of microglia identified. Analysis of upstream regulators and canonical pathways revealed impaired regulation of an activated, neuroinflammatory state within microglia. Moreover, microglia in the aged hippocampus failed to turn over during the resolving phase of neuroinflammation. Concomitantly, astrocytes in the aged hippocampus were "immunosenescent" both 4 and 24 h after LPS challenge. For example, aged astrocytes had reduced anti-inflammatory signaling and cholesterol biosynthesis, two pathways by which astrocytes regulate the inflammatory profile of microglia. One of the pathways reduced in the aged hippocampus was interleukin (IL)-10 signaling. This pathway increases astrocytic expression of transforming growth factor (TGF)-ß, an anti-inflammatory cytokine with abundant receptor expression on microglia. Therefore, transgenic astrocytic Il10raKO mice were generated to determine if impaired IL-10R/TGFß signaling within astrocytes caused an amplified microglial neuroinflammatory response. Astrocytic Il10raKO caused exaggerated sickness behavior and a prolonged neuroinflammatory response to peripheral LPS, including increased social avoidance with amplified microglial Il1b and Tnf mRNA expression. In summary, astrocytes had an immunosenescent profile with age and, in response to peripheral LPS, had IL-10R signaling deficits and a lack of cholesterol biosynthesis, both leading to the inability to resolve microglial activation.


Assuntos
Imunossenescência , Microglia , Animais , Anti-Inflamatórios , Astrócitos/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Imunidade Inata , Inflamação/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Brain Behav Immun ; 89: 414-422, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717403

RESUMO

The physiological and motivational effects of heroin and other abused drugs become associated with environmental (contextual) stimuli during repeated drug use. As a result, these contextual stimuli gain the ability to elicit drug-like conditioned effects. For example, after context-heroin pairings, exposure to the heroin-paired context alone produces similar effects on peripheral immune function as heroin itself. Conditioned immune effects can significantly exacerbate the adverse health consequences of heroin use. Our laboratory has shown that exposure to a heroin-paired context suppresses lipopolysaccharide (LPS)-induced splenic nitric oxide (NO) production in male rats, and this effect is mediated in part by the dorsal hippocampus (dHpc). However, specific dHpc output regions, whose efferents might mediate conditioned immune effects, have not been identified, nor has the contribution of ventral hippocampus (vHpc) been investigated. Here, we evaluated the role of CaMKIIα-expressing neurons in the dHpc and vHpc main output regions by expressing Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) under a CaMKIIα promoter in the dorsal subiculum and CA1 (dSub, dCA1) or ventral subiculum and CA1 (vSub, vCA1). After context-heroin conditioning, clozapine-N-oxide (CNO, DREADD agonist) or vehicle was administered systemically prior to heroin-paired context (or home-cage control) exposure and LPS immune challenge. Chemogenetic inhibition of CaMKIIα-expressing neurons in dHpc, but not vHpc, output regions attenuated the expression of conditioned splenic NO suppression. These results establish that the main dHpc output regions, the dSub and dCA1, are critical for this context-heroin conditioned immune effect.


Assuntos
Heroína , Hipocampo , Animais , Condicionamento Clássico , Masculino , Neurônios , Ratos
5.
Trends Neurosci ; 46(11): 926-940, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723009

RESUMO

Most of the individuals who experience traumatic brain injury (TBI) develop neuropsychiatric and cognitive complications that negatively affect recovery and health span. Activation of multiple inflammatory pathways persists after TBI, but it is unclear how inflammation contributes to long-term behavioral and cognitive deficits. One outcome of TBI is microglial priming and subsequent hyper-reactivity to secondary stressors, injuries, or immune challenges that further augment complications. Additionally, microglia priming with aging contributes to exaggerated glial responses to TBI. One prominent inflammatory pathway, interferon (IFN) signaling, is increased after TBI and may contribute to microglial priming and subsequent reactivity. This review discusses the contributions of microglia to inflammatory processes after TBI, as well as the influence of aging and IFNs on microglia reactivity and chronic inflammation after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Humanos , Microglia/metabolismo , Interferons/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamação
6.
Front Behav Neurosci ; 11: 153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28860980

RESUMO

Nicotine use in adolescence is pervasive in the United States and, according to the Gateway Hypothesis, may lead to progression towards other addictive substances. Given the prevalence of nicotine and ethanol comorbidity, it is difficult to ascertain if nicotine is a gateway drug for ethanol. Our study investigated the relationship between adolescent exposure to nicotine and whether this exposure alters subsequent alcohol seeking behavior. We hypothesized that rats exposed to nicotine beginning in adolescence would exhibit greater alcohol seeking behavior than non-exposed siblings. To test our hypothesis, beginning at P28, female rats were initially exposed to once daily nicotine (0.4 mg/kg, SC) or saline for 5 days. Following these five initial injections, animals were trained to nose-poke for sucrose reinforcement (10%, w/v), gradually increasing to sweetened ethanol (10% sucrose; 10% ethanol, w/v) on an FR5 reinforcement schedule. Nicotine injections were administered after the behavioral sessions to minimize acute effects of nicotine on operant self-administration. We measured the effects of nicotine exposure on the following aspects of ethanol seeking: self-administration, naltrexone (NTX)-induced decreases, habit-directed behavior, motivation, extinction and reinstatement. Nicotine exposure did not alter self-administration or the effectiveness of NTX to reduce alcohol seeking. Nicotine exposure blocked habit-directed ethanol seeking. Finally, nicotine did not alter extinction learning or cue-induced reinstatement to sweetened ethanol seeking. Our findings suggest that nicotine exposure outside the behavioral context does not escalate ethanol seeking. Further, the Gateway Hypothesis likely applies to scenarios in which nicotine is either self-administered or physiologically active during the behavioral session.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA