Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 26(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803724

RESUMO

Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 µM), foliar application of Se (7.06 µM), foliar application of Se + Seed priming with Se (7.06 µM and 75 µM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.


Assuntos
Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Secas , Selênio/administração & dosagem , Antioxidantes/análise , Brassica napus/fisiologia , Brassicaceae/fisiologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Osmorregulação , Paquistão , Óleos de Plantas/isolamento & purificação , Proteínas de Plantas/análise , Óleo de Brassica napus/isolamento & purificação
2.
Int J Phytoremediation ; 22(7): 687-693, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32085679

RESUMO

The effect of organic amendments on phytoavailability of nickel (Ni) and other metals in soil may change with time due to transformation of organic matter. We investigated the residual effect of organic amendments (farm manure [FM], poultry manure [PM], pressmud [PrM], and activated carbon [AC]) to immobilize Ni and other metals in soil and absorption of metals by Egyptian clover. Fresh and dry weights of Egyptian clover increased significantly (p < 0.05) due to residual effect of amendments compared to control. Extractable Ni and other metals had significant positive correlation with residual organic matter in soil. Extractable manganese (Mn) in post-harvest soil of Egyptian clover increased compared with that of post-harvest soil of maize (previous crop). However, extractable copper (Cu) decreased with amendments. Copper was the maximum in control followed by AC. Zinc in soil decreased in FM and PrM treated pots but increased in pots amended with PM and AC. Concentration of Ni, Mn, and Cu was the minimum in shoots of those plants grown with AC amended pots compared to the control. It was concluded that AC was the most effective for immobilization of metals in soil which consequently decreased the concentration of metals in shoots of Egyptian clover.


Assuntos
Metais Pesados , Poluentes do Solo , Trifolium , Animais , Biodegradação Ambiental , Carvão Vegetal , Egito , Medicago , Níquel , Solo
3.
Int J Phytoremediation ; 18(10): 1022-8, 2016 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26852881

RESUMO

Little is known about the effect of elemental sulfur on lead uptake and its toxicity in wheat. A pot experiment was conducted with the purpose to examine the impact of sulfur on improving Pb solubility in soil, and uptake and accumulation in wheat plants. The effect of three levels of lead (0, 50, and 100 mg/kg soil) and sulfur (0, 150, and 300 mmol/kg soil) was tested in all possible combinations. Root dry matter, straw, and grain yields, and the photosynthetic and transpiration rates decreased significantly with increase in the concentration of Pb in the soil. However, sulfur fertilization in the presence of Pb improved the photosynthetic and transpiration rates and consequently increased the straw and grain yields of wheat. It also enhanced Pb accumulation in roots, its translocation from roots to shoot, and accumulation in grain. S and Zn contents of different plant parts were also enhanced. Thus, by mitigating the toxic effect of Pb and improving wheat growth, sulfur enhances Pb accumulation by the aboveground plant parts and hence the phytoextraction capacity of wheat. However, total accumulation of Pb shows that wheat plant cannot be considered as a suitable candidate for phytoremediation.


Assuntos
Chumbo/metabolismo , Poluentes do Solo/metabolismo , Enxofre/metabolismo , Enxofre/farmacologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Biodegradação Ambiental/efeitos dos fármacos , Paquistão , Solo/química , Triticum/metabolismo
4.
J Sci Food Agric ; 96(2): 372-80, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25906838

RESUMO

Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper.


Assuntos
Produtos Agrícolas/metabolismo , Secas , Selênio/metabolismo , Mudança Climática , Espécies Reativas de Oxigênio , Estresse Fisiológico
5.
Sci Rep ; 14(1): 10870, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740776

RESUMO

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Assuntos
Carvão Vegetal , Pisum sativum , Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Solo/química , Fotossíntese/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Salinidade , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
6.
ACS Omega ; 9(35): 37231-37242, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39246467

RESUMO

Water is a precious commodity for plant growth and metabolism; however, its scarcity and saline sand conditions have a drastic effect on plant growth and development. The main objective of the current study was to understand how silicon (Si) application might help Black gram (Vigna mungo L.) against the negative impacts of salt stress and drought. The treatments of this study were: no silicon = 0 mg/kg; silicon = 40 mg/kg; control = no stress; drought stress = 50% field capacity (FC); salinity = 10 dSm-1; drought + salinity = 10 dSm-1 + 50% field capacity (FC). The findings showed that the application of silicon in the sand significantly affected growth indices such as leaf area (LA), shoot fresh weight (SFW), shoot dry weight (SDW), and shoot length (SL). Root length (RL) increased significantly up to 55.9% in response to drought stress. Applying Si to the sand increased the root length (RL) by 53.9%. In comparison to the control, the turgor potential of leaves decreased by 10.3% under salinity, while it increased by 44.7% under drought stress. However, the application of silicon to the sand significantly improved the turgor potential of leaves by 98.7%. Under both drought and salt stress, gas exchange characteristics and photosynthetic pigments dramatically decreased. Applying 40 mg/kg silicon to sand improved the gas exchange characteristics, protein contents, and photosynthetic pigments of plants under drought and salt stress, such as levels of chlorophyll (a, and b) increased by 18% and 26%, respectively. Under control conditions, the hydrogen peroxide (H2O2) concentration was lower but increased during periods of drought and salinity stress. The concentrations of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were decreased by salt and drought stress and increased by sand application of silicon at a rate of 40 mg/kg. Application of silicon at 40 mg/kg sand rate improved the growth and development under control and stress conditions. Overall, this study provides an extensive understanding of the physiological mechanisms underlying the black gram's ability to withstand under salt stress and drought stress by application of Si which will serve as a roadmap for future cellular research.

7.
Sci Rep ; 14(1): 12195, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806561

RESUMO

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Assuntos
Antioxidantes , Brassica napus , Sementes , Tioureia , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Tioureia/farmacologia , Tioureia/análogos & derivados , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Temperatura Alta , Estresse Oxidativo/efeitos dos fármacos , Genótipo , Resposta ao Choque Térmico/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo
8.
Sci Rep ; 14(1): 15985, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987560

RESUMO

Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at  the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought.  Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.


Assuntos
Secas , Estresse Oxidativo , Folhas de Planta , Tioureia , Triticum , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Tioureia/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Água/metabolismo , Estresse Fisiológico/efeitos dos fármacos
9.
Chemosphere ; 338: 139561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478990

RESUMO

The cadmium contamination of soil is an alarming issue worldwide and among various mitigation strategies, nanotechnology mediated management of Cd contamination has become a well-accepted approach. The Cerium Oxide Nanoparticles (CeO2-NPs) are widely being explored for their novel works in Agro-Industry and Environment, including stress mitigation in crops. Very little work is reported regarding role of CeO2-NPs in management of Cd contamination in cereal crops like wheat. Present work was planned to check efficacy of CeO2-NPs in Cd stress mitigation of wheat under alkaline calcareous soil conditions. In this experiment, 4 sets of Cd contamination (Uncontaminated control-UCC, 10, 20, and 30 mg Cd per kg soil) and 5 sets of CeO2-NPs NPs (0, 200, 400, 600, and 1000 mg NP per kg soil) were applied in pots following completely randomized design (CRD) and wheat crop was grown. The growth, physiology, yield and Cd and Ce accumulation by wheat root, shoot and grain was monitored. The maximum Cd spiking level (30 mg kg-1) was found to be most toxic for plant growth. The results showed that the nanoparticles were overall beneficial for wheat growth and maximum level (1000 mg kg-1) being the most significant one under all Cd spiking sets. In Cd-30 sets, 1000 mg kg-1 NPs application resulted in decreased soil bioavailable Cd concentration (49.63% decrease compared to 30 mg kg-1 Cd spiked sets termed as Cd-30 Control), decreased Cd accumulation in all three tissues: root (58.36% decrease), shoot (52.30% decrease) and grain (55.56% decrease) while increased root dry weight (62.14%), shoot dry weight (89.32%), total grain yield (80.08%) and improved plant physiology with respect to Cd-30 control. Nanoparticles application substantially increased wheat root, shoot and grain Ce concentrations as well. The further prospects of these nanoparticles in relation to various biotic and abiotic stresses are advised to be explored.


Assuntos
Cério , Nanopartículas , Poluentes do Solo , Triticum , Cádmio/toxicidade , Cádmio/análise , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Nanopartículas/toxicidade , Grão Comestível/química , Cério/farmacologia , Produtos Agrícolas
10.
Environ Sci Pollut Res Int ; 30(25): 67071-67086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37103705

RESUMO

The foliar applied silicon (Si) has the potential to ameliorate heavy metals, especially cadmium (Cd) toxicity; however, Si dose optimization is strategically important for boosting the growth of soil microbes and Cd stress mitigation. Thus, the current research was performed to assess the Si-induced physiochemical and antioxidant trait alterations along with Vesicular Arbuscular Mycorrhiza (VAM) status in maize roots under Cd stress. The trial included foliar Si application at the rate of 0, 5, 10, 15, and 20 ppm while Cd stress (at the rate of 20 ppm) was induced after full germination of maize seed. The response variables included various physiochemical traits such as leaf pigments, protein, and sugar contents along with VAM alterations under induced Cd stress. The results revealed that exogenous application of Si in higher doses remained effective in improving the leaf pigments, proline, soluble sugar, total proteins, and all free amino acids. Additionally, the same treatment remained unmatched in terms of antioxidant activity compared to lower doses of foliar-applied Si. Moreover, VAM was recorded to be at peak under 20 ppm Si treatment. Thus, these encouraging findings may serve as a baseline to develop Si foliar application as a biologically viable mitigation strategy for maize grown in Cd toxicity soils. Overall, the exogenous application of Si helpful for reducing the uptake of Cd in maize and also improving the mycorrhizal association as well as the philological mechanism and antioxidant activities in plant under cadmium stress conditions. Also, future studies must test more doses concerning to varying Cd stress levels along with determining the most responsive crop stage for Si foliar application.


Assuntos
Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Cádmio/análise , Antioxidantes/metabolismo , Zea mays , Silício/farmacologia , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Açúcares/metabolismo
11.
Biomolecules ; 11(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356629

RESUMO

Soil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA3) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA3 on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m-1, and severe salinity-12 dS m-1). The GA3 treatments consisted of control, hydro-priming (HP), water foliar spray (WFS), HP + WFS, seed priming with GA3 (GA3P, 100 mg L-1), foliar spray with GA3 (GA3FS, 100ppm) and GA3P + GA3FS. Salt stress particularly at 12 dS m-1 reduced the length of shoots and roots, fresh and dry weights, chlorophyll, and carotenoid contents, K+ ion accumulation and activities of antioxidant enzymes, while enhanced the oxidative damage and accumulation of the Na+ ion in maize plants. Nevertheless, the application of GA3 improved maize growth, reduced oxidative stress, and increased the antioxidant enzymes activities, antioxidant genes expression, and K+ ion concentration under salt stress. Compared with control, the GA3P + GA3FS recorded the highest increase in roots and shoots length (19-37%), roots fresh and dry weights (31-43%), shoots fresh and dry weights (31-47%), chlorophyll content (21-70%), antioxidant enzymes activities (73.03-150.74%), total soluble protein (13.05%), K+ concentration (13-23%) and antioxidants genes expression levels under different salinity levels. This treatment also reduced the H2O2 content, and Na+ ion concentration. These results indicated that GA3P + GA3FS could be used as an effective tool for improving the maize growth and development, and reducing the oxidative stress in salt-contaminated soils.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Zea mays , Tolerância ao Sal/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento
12.
Front Plant Sci ; 12: 767150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975951

RESUMO

Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.

13.
PLoS One ; 15(12): e0242441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264314

RESUMO

Camelina sativa L. is an oilseed crop with wide nutritional and industrial applications. Because of favorable agronomic characteristics of C. sativa in a water-limiting environment interest in its production has increased worldwide. In this study the effect of different irrigation regimes (I0 = three irrigations, I1 = two irrigations, I2 = one irrigation and I3 = one irrigation) on physio-biochemical responses and seed yield attributes of two C. sativa genotypes was explored under semi-arid conditions. Results indicated that maximum physio-biochemical activity, seed yield and oil contents appeared in genotype 7126 with three irrigations (I0). In contrast water deficit stress created by withholding irrigation (I1, I2 and I3) at different growth stages significantly reduced the physio-biochemical activity as well as yield responses in both C. sativa genotypes. Nonetheless the highest reduction in physio-biochemical and yield attributes were observed in genotype 8046 when irrigation was skipped at vegetative and flowering stages of crop (I3). In genotypic comparison, C. sativa genotype 7126 performed better than 8046 under all I1, I2 and I3 irrigation treatments. Because 7126 exhibited better maintenance of tissue water content, leaf gas exchange traits and chlorophyll pigment production, resulting in better seed yield and oil production. Findings of this study suggest that to achieve maximum yield potential in camelina three irrigations are needed under semi-arid conditions, however application of two irrigations one at flowering and second at silique development stage can ensure an economic seed yield and oil contents. Furthermore, genotype 7126 should be adopted for cultivation under water limited arid and semi-arid regions due to its better adaptability.


Assuntos
Irrigação Agrícola , Brassicaceae/fisiologia , Clima Desértico , Água , Análise de Variância , Brassicaceae/genética , Clorofila/metabolismo , Gases/metabolismo , Umidade , Osmose , Folhas de Planta/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Chuva , Sementes/metabolismo , Temperatura
15.
Environ Sci Pollut Res Int ; 25(1): 782-789, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29063403

RESUMO

Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net benefit, and benefit-cost ratio were the highest in the S3 treatment during both years of experimentation. Thus, relay cropping of wheat in standing cotton might be a viable option to improve the soil physical environment and profitability of the cotton-wheat cropping system.


Assuntos
Produção Agrícola/métodos , Gossypium/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Conservação dos Recursos Naturais/economia , Produção Agrícola/economia , Paquistão , Solo
16.
Biol Trace Elem Res ; 151(2): 284-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197374

RESUMO

Insufficient stand establishment at early growth stages in wheat (Triticum aestivum L.) due to drought stress is a major problem that limits overall efficiency and yield of crop. Priming of seed is an effective method for raising seed performance and improving tolerance of crops to abiotic stresses especially drought. The seeds of two local wheat cultivars (Kohistan-97 and Pasban-90) were soaked in distilled water or sodium selenate solutions of 25, 50, 75, and 100 µM for 1/2 or 1 h at 25 °C and later re-dried to their original moisture levels before sowing. One-hour priming significantly increased root length stress tolerance index, dry matter stress tolerance index, and total biomass of seedlings; however, no significant effect of changing duration of Se seed priming was observed on plant height stress tolerance index and shoot/root ratio. Among cultivars, Kohistan-97 was found to be more responsive to Se seed treatment as 1 h priming at 100 µM significantly increased its total biomass by 43 % as compared to control treatment. Although biomass of seedlings was not affected with Se seed priming under normal conditions, but it increased significantly with increase in rates of Se under drought stress conditions. One-hour priming at 75 µM increased the total sugar content and total free amino acids in both wheat cultivars. A more significant decrease in soluble proteins of seedlings was observed by 1 h priming than 1/2 h priming under drought stress conditions.


Assuntos
Secas , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Compostos de Selênio/farmacologia , Selênio/química , Triticum/química , Aminoácidos/química , Germinação/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Sementes/química , Ácido Selênico , Compostos de Selênio/química , Estresse Fisiológico , Fatores de Tempo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Água
17.
Plant Physiol Biochem ; 57: 84-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22695221

RESUMO

5-Aminolevulinic acid (ALA) is an important plant growth regulator which is derived from 5-carbon aliphatic amino acid. The present study investigates the interaction of increasing NaCl-salinity and ALA on plant growth, leaf pigment composition, leaf and root Na(+)/K(+) ratio and chloroplast ultrastructure in mesophyll cells of oilseed rape (Brassica napus) leaves. The plants were treated hydroponically with three different salinity levels (0, 100, 200 mM) and foliar application of ALA (30 mg l(-1)) simultaneously. Ten days after treatment, higher NaCl-salinity significantly reduced the plant biomass and height. However, ALA application restored the plant biomass and plant height under saline conditions. A concentration-dependent increase in Na(+) uptake was observed in the aerial parts of B. napus plants. On the other hand, ALA reduced Na(+) uptake, leading to a significant decrease in Na(+)/K(+) ratio. Accumulation of Na(+) augmented the oxidative stress, which was evident by electron microscopic images, highlighting several changes in cell shape and size, chloroplast swelling, increased number of plastogloubli, reduced starch granules and dilations of the thylakoids. Foliar application of ALA improved the energy supply and investment in mechanisms (higher chlorophyll and carotenoid contents, enhanced photosynthetic efficiency), reduced the oxidative stress as evident by the regular shaped chloroplasts with more intact thylakoids. On the basis of these results we can suggest that ALA is a promising plant growth regulator which can improve plant survival under salinity.


Assuntos
Ácido Aminolevulínico/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/ultraestrutura , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Cloreto de Sódio/farmacologia , Microscopia Eletrônica de Transmissão
18.
Int J Phytoremediation ; 12(7): 633-49, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21166273

RESUMO

Phytoextraction has received increasing attention as a promising, cost-effective alternative to conventional engineering-based remediation methods for metal contaminated soils. In order to enhance the phytoremediative ability of green plants chelating agents are commonly used. Our study aims to evaluate whether, citric acid (CA) or elemental sulfur (S) should be used as an alternative to the ethylene diamine tetraacetic acid (EDTA)for chemically enhanced phytoextraction. Results showed that EDTA was more efficient than CA and S in solubilizing lead (Pb) from the soil. The application of EDTA and S increased the shoot biomass of wheat. However, application of CA at higher rates (30 mmol kg(-1)) resulted in significantly lower wheat biomass. Photosynthesis and transpiration rates increased with EDTA and S application, whereas these parameters were decreased with the application of CA. Elemental sulfur was ineffective for enhancing the concentration of Pb in wheat shoots. Although CA did not increase the Pb solubility measured at the end of experiment, however, it was more effective than EDTA in enhancing the concentration of Pb in the shoots of Triticum aestivum L. It was assumed that increase in Mn concentration to toxic levels in soil with CA addition might have resulted in unusual Pb concentration in wheat plants. The results of the present study suggest that under the conditions used in this experiment, CA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat compared to either EDTA or S.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Chumbo/isolamento & purificação , Solo/normas , Triticum/fisiologia , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Ácido Edético/farmacologia , Paquistão , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Solo/análise , Solubilidade , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA