Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Rep ; 40(7): 1158-1169, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-36541391

RESUMO

Covering: up to 2017-2022Many small molecule drugs are first discovered in nature, commonly the result of long ethnopharmacological use by people, and then characterized and purified from their biological sources. Traditional medicines are often more sustainable, but issues related to source consistency and efficacy present challenges. Modern medicine has focused solely on purified molecules, but evidence is mounting to support some of the more traditional uses of medicinal biologics. When is a more traditional delivery of a therapeutic appropriate and warranted? What studies are required to establish validity of a traditional medicine approach? Artemisia annua and A. afra are two related but unique medicinal plant species with long histories of ethnopharmacological use. A. annua produces the sesquiterpene lactone antimalarial drug, artemisinin, while A. afra produces at most, trace amounts of the compound. Both species also have an increasing repertoire of modern scientific and pharmacological data that make them ideal candidates for a case study. Here accumulated recent data on A. annua and A. afra are reviewed as a basis for establishing a decision tree for querying their therapeutic use, as well as that of other medicinal plant species.


Assuntos
Antimaláricos , Artemisia annua , Artemisininas , Plantas Medicinais , Humanos , Artemisininas/farmacologia , Antimaláricos/farmacologia
2.
Proc Natl Acad Sci U S A ; 112(3): 821-6, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561559

RESUMO

Pharmaceutical monotherapies against human malaria have proven effective, although ephemeral, owing to the inevitable evolution of resistant parasites. Resistance to two or more drugs delivered in combination will evolve more slowly; hence combination therapies have become the preferred norm in the fight against malaria. At the forefront of these efforts has been the promotion of Artemisinin Combination Therapy, but despite these efforts, resistance to artemisinin has begun to emerge. In 2012, we demonstrated the efficacy of the whole plant (WP)--not a tea, not an infusion--as a malaria therapy and found it to be more effective than a comparable dose of pure artemisinin in a rodent malaria model. Here we show that WP overcomes existing resistance to pure artemisinin in the rodent malaria Plasmodium yoelii. Moreover, in a long-term artificial selection for resistance in Plasmodium chabaudi, we tested resilience of WP against drug resistance in comparison with pure artemisinin (AN). Stable resistance to WP was achieved three times more slowly than stable resistance to AN. WP treatment proved even more resilient than the double dose of AN. The resilience of WP may be attributable to the evolutionary refinement of the plant's secondary metabolic products into a redundant, multicomponent defense system. Efficacy and resilience of WP treatment against rodent malaria provides compelling reasons to further explore the role of nonpharmaceutical forms of AN to treat human malaria.


Assuntos
Antimaláricos/farmacologia , Artemisia annua/química , Artemisininas/farmacologia , Resistência a Medicamentos , Animais , Camundongos
3.
Planta ; 244(5): 999-1010, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27339275

RESUMO

MAIN CONCLUSION: Roots of plants with high artemisinin-producing leaves increased leaf production of artemisinin in low-producing plants and vice versa indicating roots are involved in controlling artemisinin biosynthesis in shoots. The anti-malarial sesquiterpene, artemisinin, is produced and stored in glandular trichomes (GLTs) of Artemisia annua. Evidence suggested roots, which produce no significant artemisinin nor precursor compounds, regulate production of artemisinin biosynthesis in the leaves. Using grafting, we studied the relationship between rootstock and scion by measuring GLTs and five artemisinic metabolites (artemisinin, deoxyartemisinin, dihydroartemisinic acid, artemisinic acid, arteannuin B) in scions of ungrafted, self-grafted, and cross-grafted plants among three cultivars: S and 15 both having GLTs with artemisinin at 1.49 and 0.57 %, respectively, and G producing neither GLTs nor detectable artemisinin. All artemisinin-producing self-grafts, e.g., S/S (scion/rootstock) and 15/15, produced more artemisinin than ungrafted plants, likely from grafting stress. S/S grafts also produced more GLTs. The 15/S grafts produced more artemisinin than S/15, suggesting rootstocks from high producing S plants stimulated artemisinin production in 15 scions. S/15 grafts yielded less artemisinin than S/S, but more than either 15/15 or ungrafted n15 and nS; S/15 grafts also had a lower density of GLTs than S/S, suggesting rootstock inhibition of the scion. The S rootstock induced trace artemisinin production in G scions, but did not induce GLT formation in G/S grafts. Different grafts exhibited different trichome morphologies and effects on artemisinic pathway flux. This study provides new information regarding the role of roots in GLT development and artemisinin production in this important medicinal plant.


Assuntos
Artemisia annua/metabolismo , Artemisininas/metabolismo , Metaboloma , Raízes de Plantas/metabolismo , Tricomas/metabolismo , Artemisininas/química , Biomassa , Vias Biossintéticas , Flavonoides/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Tricomas/crescimento & desenvolvimento
4.
Ind Crops Prod ; 67: 185-191, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25729214

RESUMO

Dried leaves of Artemisia annua show promise as an inexpensive and sustainable antimalarial therapeutic, especially for use in developing countries. Along with the potent terpene, artemisinin, many other small molecules produced by the plant seem to aid in the therapeutic response. However, little is known about the ontogenic and phenological production of artemisinin in the plant, and its plethora of other important secondary metabolites. From a consistently high artemisinin-producing A. annua clone (SAM) we extracted and analyzed by GC/MS 22 different metabolites including terpenes, flavonoids, a coumarin, and two phenolic acids as they varied during leaf development and growth of the plant from the vegetative stage through the reproductive, full flower stage. As leaves developed, the maximum amount of most metabolites was in the shoot apical meristem. Artemisinin, on the other hand, maximized once leaves matured. Leaf and apical tissues (e.g. buds, flowers) varied in their metabolite content with growth stage with maximum artemisinin and other important secondary metabolites determined to be at floral bud emergence. These results indicated that plants at the floral bud stage have the highest level of artemisinin and other therapeutic compounds for the treatment of malaria.

5.
Ind Crops Prod ; 62: 173-178, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25228784

RESUMO

Artemisia annua L., long used as a tea infusion in traditional Chinese medicine, produces artemisinin. Although artemisinin is currently used as artemisinin-based combination therapy (ACT) against malaria, oral consumption of dried leaves from the plant showed efficacy and will be less costly than ACT. Many compounds in the plant have some antimalarial activity. Unknown, however, is how these plant components change as leaves are processed into tablets for oral consumption. Here we compared extracts from fresh and dried leaf biomass with compressed leaf tablets of A. annua. Using GC-MS, nineteen endogenous compounds, including artemisinin and several of its pathway metabolites, nine flavonoids, three monoterpenes, a coumarin, and two phenolic acids, were identified and quantified from solvent extracts to determine how levels of these compounds changed during processing. Results showed that compared to dried leaves, artemisinin, arteannuin B, artemisinic acid, chlorogenic acid, scopoletin, chrysoplenetin, and quercetin increased or remained stable with powdering and compression into tablets. Dihydroartemisinic acid, monoterpenes, and chrysoplenol-D decreased with tablet formation. Five target compounds were not detectable in any of the extracts of this cultivar. In contrast to the individually measured aglycone flavonoids, using the AlCl3 method, total flavonoids increased nearly fivefold during the tablet formation. To our knowledge this is the first study documenting changes that occurred in processing dried leaves of A. annua into tablets. These results will improve our understanding of the potential use of not only this medicinal herb, but also others to afford better quality control of intact plant material for therapeutic use.

6.
Plant Cell Rep ; 32(2): 207-18, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23085820

RESUMO

KEY MESSAGE : Rooting of Artemisia annua increases trichome size on leaves and helps drive the final steps of the biosynthesis of the sesquiterpene antimalarial drug, artemisinin. Artemisia annua produces the antimalarial drug, artemisinin (AN), which is synthesized and stored in glandular trichomes (GLTs). In vitro-grown A. annua shoots produce more AN when they form roots. This may be a function not of the roots, but rather media components such as the phytohormones, α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP), or salts and sucrose used to maintain either rooted or unrooted shoot cultures. We investigated how three main media components altered artemisinic metabolite production, pathway gene transcripts, and GLT formation in both mature and developing leaves in rooted and unrooted cultures. Although transcript levels of AN biosynthetic genes were not altered, AN levels were significantly different, and there were major differences in both artemisinic metabolite levels and trichomes in mature versus developing leaves. For example, NAA induced higher AN production in rooted shoots, but only in mature leaves. In developing leaves, BAP increased GLT density on the leaf surface. When both phytohormones were present, GLTs were larger on young developing leaves, but smaller on mature leaves. Furthermore, although other media components increased GLT density, their size decreased on young leaves, but there was no effect on mature leaves. Roots also appeared to drive conversion of artemisinic precursors towards end products. These results suggest that, while the presence of roots affects AN and trichome production, phytohormones and other media constituents used for in vitro culture of A. annua also exert an influence.


Assuntos
Antimaláricos/metabolismo , Artemisia annua/metabolismo , Artemisininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Antimaláricos/química , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Artemisia annua/crescimento & desenvolvimento , Artemisininas/química , Compostos de Benzil , Biomassa , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Cinetina/metabolismo , Ácidos Naftalenoacéticos/metabolismo , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Purinas , RNA Mensageiro/genética , RNA de Plantas/genética , Sesquiterpenos/química , Sesquiterpenos/metabolismo
7.
Pathogens ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36839499

RESUMO

Mycobacterium tuberculosis (Mtb) is a deadly pathogen and causative agent of human tuberculosis, causing ~1.5 million deaths every year. The increasing drug resistance of this pathogen necessitates novel and improved treatment strategies. A crucial aspect of the host-pathogen interaction is bacterial nutrition. In this study, Artemisia annua and Artemisia afra dichloromethane extracts were tested for bactericidal activity against Mtb strain mc26230 under hypoxia and various infection-associated carbon sources (glycerol, glucose, and cholesterol). Both extracts showed significant bactericidal activity against Mtb, regardless of carbon source. Based on killing curves, A. afra showed the most consistent bactericidal activity against Mtb for all tested carbon sources, whereas A. annua showed the highest bactericidal activity in 7H9 minimal media with glycerol. Both extracts retained their bactericidal activity against Mtb under hypoxic conditions. Further investigations are required to determine the mechanism of action of these extracts and identify their active constituent compounds.

8.
Planta Med ; 78(10): 1024-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22673829

RESUMO

A number of flavonoids including casticin and artemetin from Artemisia annua have shown synergism with artemisinin against Plasmodium falciparum, but it is unclear if the flavonoids are also extracted into a tea infusion of the plant. Using a tea infusion preparation protocol that was reported to be highly effective for artemisinin extraction, we measured casticin and artemetin extraction. There was only a 1.8 % recovery of casticin in the infusion while artemetin was undetectable. After 24 hr storage at room temperature, casticin yield declined by 40 %. These results show that although a tea infusion of the plant may extract artemisinin, the polymethoxylated flavonoids casticin and artemetin are poorly extracted and lost with storage at room temperature and thus, the tea infusion appears to lose synergistic value.


Assuntos
Artemisia annua/química , Flavonoides/isolamento & purificação , Artemisininas/química , Bebidas , Estabilidade de Medicamentos , Sinergismo Farmacológico , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Folhas de Planta/química , Temperatura , Fatores de Tempo
9.
J Ethnopharmacol ; 298: 115587, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934190

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. AIM OF THE STUDY: Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin. MATERIALS AND METHODS: HepaRG cells were treated with 10 µM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/g DW artemisinin in the leaves, respectively; qPCR and Western blots were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using human liver microsomes and P450-Glo assays. RESULTS: All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas. CONCLUSIONS: This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology.


Assuntos
Artemisia annua , Artemisia , Artemisininas , Artemisininas/farmacologia , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Humanos , Extratos Vegetais/farmacologia , Chá
10.
Plant Physiol ; 154(2): 958-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724645

RESUMO

The relationship between the transition to budding and flowering in Artemisia annua and the production of the antimalarial sesquiterpene, artemisinin (AN), the dynamics of artemisinic metabolite changes, AN-related transcriptional changes, and plant and trichome developmental changes were measured. Maximum production of AN occurs during full flower stage within floral tissues, but that changes in the leafy bracts and nonbolt leaves as the plant shifts from budding to full flower. Expression levels of early pathway genes known to be involved in isopentenyl diphosphate and farnesyl diphosphate biosynthesis leading to AN were not immediately positively correlated with either AN or its precursors. However, we found that the later AN pathway genes, amorpha-4,11-diene synthase (ADS) and the cytochrome P450, CYP71AV1 (CYP), were more highly correlated with AN's immediate precursor, dihydroartemisinic acid, within all leaf tissues tested. In addition, leaf trichome formation throughout the developmental phases of the plant also appears to be more complex than originally thought. Trichome changes correlated closely with the levels of AN but not its precursors. Differences were observed in trichome densities that are dependent both on developmental stage (vegetative, budding, and flowering) and on position (upper and lower leaf tissue). AN levels declined significantly as plants matured, as did ADS and CYP transcripts. Spraying leaves with AN or artemisinic acid inhibited CYP transcription; artemisinic acid also inhibited ADS transcription. These data allow us to present a novel model for the differential control of AN biosynthesis as it relates to developmental stage and trichome maturation and collapse.


Assuntos
Artemisia annua/genética , Artemisininas/metabolismo , Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Artemisia annua/crescimento & desenvolvimento , Artemisia annua/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA Mensageiro/análise , RNA de Plantas/análise , Transcrição Gênica
11.
Phytochem Rev ; 10(2): 173-183, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21643453

RESUMO

Artemisia annua L. produces the sesquiterpene lactone, artemisinin, a potent antimalarial drug that is also effective in treating other parasitic diseases, some viral infections and various neoplasms. Artemisinin is also an allelopathic herbicide that can inhibit the growth of other plants. Unfortunately, the compound is in short supply and thus, studies on its production in the plant are of interest as are low cost methods for drug delivery. Here we review our recent studies on artemisinin production in A. annua during development of the plant as it moves from the vegetative to reproductive stage (flower budding and full flower formation), in response to sugars, and in concert with the production of the ROS, hydrogen peroxide. We also provide new data from animal experiments that measured the potential of using the dried plant directly as a therapeutic. Together these results provide a synopsis of a more global view of regulation of artemisinin biosynthesis in A. annua than previously available. We further suggest an alternative low cost method of drug delivery to treat malaria and other neglected tropical diseases.

12.
J Ethnopharmacol ; 268: 113638, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33271239

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua has a long history of use in Southeast Asia where it was used to treat "fever", and A. afra has a similar history in southern Africa. Since their discovery, A. annua use, in particular, has expanded globally with millions of people using the plant in therapeutic tea infusions, mainly to treat malaria. AIM OF THE STUDY: In this study, we used in vitro studies to query if and how A. annua and A. afra tea infusions being used across the globe affect asexual Plasmodium falciparum parasites, and their sexual gametocytes. MATERIALS AND METHODS: P. falciparumstrain NF54 was grown in vitro, synchronized, and induced to form gametocytes using N-acetylglucosamine. Cultures during asexual, early, and late stage gametocytogenesis were treated with artemisinin, methylene blue, and A. annua and A. afra tea infusions (5 g DW/L) using cultivars that contained 0-283 µM artemisinin. Asexual parasitemia and gametocytemia were analyzed microscopically. Gametocyte morphology also was scored. Markers of early (PfGEXP5) and late stage (Pfs25) gametocyte gene expression also were measured using RT-qPCR. RESULTS: Both A. annua and A. afra tea infusions reduced gametocytemia in vitro, and the effect was mainly artemisinin dependent. Expression levels of both marker genes were reduced and also occurred with the effect mainly attributed to artemisinin content of four tested Artemisia cultivars. Tea infusions of both species also inhibited asexual parasitemia and although mainly artemisinin dependent, there was a weak antiparasitic effect from artemisinin-deficient A. afra. CONCLUSIONS: These results showed that A. annua and to a lesser extent, A. afra, inhibited parasitemia and gametocytemia in vitro.


Assuntos
Artemisia , Artemisininas/farmacologia , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Chá , Artemisininas/isolamento & purificação , Células Germinativas/efeitos dos fármacos , Células Germinativas/fisiologia , Extratos Vegetais/isolamento & purificação , Plasmodium falciparum/fisiologia
13.
PLoS One ; 16(3): e0240874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651845

RESUMO

Dried-leaf Artemisia annua L. (DLA) antimalarial therapy was shown effective in prior animal and human studies, but little is known about its mechanism of action. Here IC50s and ring-stage assays (RSAs) were used to compare extracts of A. annua (DLAe) to artemisinin (ART) and its derivatives in their ability to inhibit and kill Plasmodium falciparum strains 3D7, MRA1252, MRA1240, Cam3.11 and Cam3.11rev in vitro. Strains were sorbitol and Percoll synchronized to enrich for ring-stage parasites that were treated with hot water, methanol and dichloromethane extracts of DLA, artemisinin, CoArtem™, and dihydroartemisinin. Extracts of A. afra SEN were also tested. There was a correlation between ART concentration and inhibition of parasite growth. Although at 6 hr drug incubation, the RSAs for Cam3.11rev showed DLA and ART were less effective than high dose CoArtem™, 8 and 24 hr incubations yielded equivalent antiparasitic results. For Cam3.11, drug incubation time had no effect. DLAe was more effective on resistant MRA-1240 than on the sensitive MRA-1252 strain. Because results were not as robust as observed in animal and human studies, a host interaction was suspected, so sera collected from adult and pediatric Kenyan malaria patients was used in RSA inhibition experiments and compared to sera from adults naïve to the disease. The sera from both age groups of malaria patients inhibited parasite growth ≥ 70% after treatment with DLAe and compared to malaria naïve subjects suggesting some host interaction with DLA. The discrepancy between these data and in-vivo reports suggested that DLA's effects require an interaction with the host to unlock their potential as an antimalarial therapy. Although we showed there are serum-based host effects that can kill up to 95% of parasites in vitro, it remains unclear how or if they play a role in vivo. These results further our understanding of how DLAe works against the malaria parasite in vitro.


Assuntos
Antimaláricos/farmacologia , Artemisia annua/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antimaláricos/química , Artemisia annua/metabolismo , Artemisininas/farmacologia , Criança , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia
14.
Longhua Chin Med ; 42021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316676

RESUMO

BACKGROUND: Artemisia annua L.is a well-established medicinal herb used for millennia to treat parasites and fever-related ailments caused by various microbes. Although effective against many infectious agents, the plant is not a miracle cure and there are infections where it has proved ineffective or limited. It is important to report those failures. METHODS: Here artemisinin, artesunate and dried leaf slurries of A. annua were used daily for 6 days in vivo against Babesia microti in mice 2 days post infection at 100 µg artemisinin/kg body weight. Parasitemia was measure before and 15 days days post treatment. Artemisinin and extracts of A. annua also were tested in vitro against six Candida sp. at artemisinin concentrations up to 180 µM and growth measured after cultures were fed drugs once at different stages of growth and also after repeated dosing. RESULTS: A. annua, artesunate, and artemisinin were ineffective in reducing or eliminating parasitemia in B. microti-infected mice treated at 100 µg artemisinin/kg body weight. Although the growth of exponential cultures of many of the tested Candida sp. was inhibited, the response was not sustained and both artemisinin and Artemisia were essentially ineffective at concentrations of artemisinin at up to 180 µM of artemisinin. CONCLUSIONS: Together these results show that artemisinin, its derivatives, and A. annua are ineffective against B. microti and at least six species of Candida.

15.
Biotechnol Bioeng ; 107(5): 802-13, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20687140

RESUMO

Hairy roots have the potential to produce a variety of valuable small and large molecules. The mist reactor is a gas phase bioreactor that has shown promise for low-cost culture of hairy roots. Using a newer, disposable culture bag, mist reactor performance was studied with two species, Artemisia annua L. and Arachis hypogaea (peanut), at scales from 1 to 20 L. Both species of hairy roots when grown at 1 L in the mist reactor showed growth rates that surpassed that in shake flasks. From the information gleaned at 1 L, Arachis was scaled further to 4 and then 20 L. Misting duty cycle, culture medium flow rate, and timing of when flow rate was increased were varied. In a mist reactor increasing the misting cycle or increasing the medium flow rate are the two alternatives for increased delivery of liquid nutrients to the root bed. Longer misting cycles beyond 2-3 min were generally deemed detrimental to growth. On the other hand, increasing the medium flow rate to the sonic nozzle especially during the exponential phase of root growth (weeks 2-3) was the most important factor for increasing growth rates and biomass yields in the 20 L reactors. A. hypogaea growth in 1 L reactors was µ = 0.173 day(-1) with biomass yield of 12.75 g DW L(-1). This exceeded that in shake flasks at µ = 0.166 day(-1) and 11.10 g DW L(-1). Best growth rate and biomass yield at 20 L was µ = 0.147 and 7.77 g DW L(-1), which was mainly achieved when medium flow rate delivery was increased. The mist deposition model was further evaluated using this newer reactor design and when the apparent thickness of roots (+hairs) was taken into account, the empirical data correlated with model predictions. Together these results establish the most important conditions to explore for future optimization of the mist bioreactor for culture of hairy roots.


Assuntos
Arachis/crescimento & desenvolvimento , Artemisia annua/crescimento & desenvolvimento , Biomassa , Biotecnologia/métodos , Raízes de Plantas/crescimento & desenvolvimento , Reatores Biológicos , Técnicas de Cultura de Células
16.
Appl Microbiol Biotechnol ; 85(5): 1339-51, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19956945

RESUMO

Despite significant efforts over nearly 30 years, only a few products produced by in vitro plant cultures have been commercialized. Some new advances in culture methods and metabolic biochemistry have improved the useful potential of plant cell cultures. This review will provide references to recent relevant reviews along with a critical analysis of the latest improvements in plant cell culture, co-cultures, and disposable reactors for production of small secondary product molecules, transgenic proteins, and other products. Some case studies for specific products or production systems are used to illustrate principles.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Células Vegetais , Plantas/metabolismo , Proteínas Recombinantes/biossíntese , Biomassa , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Engenharia de Proteínas
17.
Plant Cell Rep ; 29(2): 143-52, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20084379

RESUMO

The antimalarial sesquiterpene, artemisinin, is in short supply; demand is not being met, and the role of artemisinin in the plant is not well established. Prior work showed that addition of dimethyl sulfoxide (DMSO) to seedlings increased artemisinin in their shoots and this study further investigated that serendipitous observation. When in vitro-cultured Artemisia annua rooted shoots were fed different amounts of DMSO (0-2.0% v/v), artemisinin levels doubled and showed biphasic optima at 0.25 and 2.0% DMSO. Both artemisinin and its precursor, dihydroartemisinic acid, increased with the former continuing 7 days after DMSO treatment. There was no stimulation of artemisinin production in DMSO-treated unrooted shoots. The first gene in the artemisinin biosynthetic pathway, amorphadiene synthase, showed no increase in transcript level in response to DMSO compared to controls. In contrast, the second gene in the pathway, CYP71AV1, did respond to DMSO but at a level of transcripts inverse to artemisinin levels. When rooted shoots were stained for the reactive oxygen species (ROS), H2O2, ROS increased with increasing DMSO concentration; unrooted shoots produced no ROS in response to DMSO. Both the increases in DMSO-induced ROS response and corresponding artemisinin levels were inhibited by addition of vitamin C. Together these data show that at least in response to DMSO, artemisinin production and ROS increase and that when ROS is reduced, so also is artemisinin suggesting that ROS may play a role in artemisinin production in A. annua.


Assuntos
Artemisia annua/metabolismo , Artemisininas/metabolismo , Dimetil Sulfóxido/farmacologia , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Ácido Ascórbico/farmacologia , Meios de Cultura , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , RNA Mensageiro/genética , RNA de Plantas/genética
18.
Chem Biodivers ; 7(5): 1098-110, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20491066

RESUMO

Isoprenoids are a highly diverse and important group of natural compounds. The enzyme 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) catalyzes a key regulatory step in the non-mevalonate isoprenoid biosynthetic pathway in eubacteria and in plant plastids. For example, in Artemisia annua DXR participates in regulation of the biosynthesis of artemisinin, an important antimalarial drug. We performed phylogenetic analysis using DXR protein sequences from a model prokaryote, Escherichia coli, a picoplanktonic alga, Ostreococcus lucimarinus, and higher plants. The functional domain of DXR was conserved, allowing molecular evolutionary comparisons of both prokaryotic and eukaryotic sequences of DXR. Despite this conservation, for some plant species such as Campthoteca acuminata and Arabidopsis thaliana, phylogenetic relationships of their lineages were consistently violated. Our analysis revealed that plant DXR has an N-terminal transit domain that is likely bipartite, consisting of a chloroplast transit peptide (cTP) and a lumen transit peptide (lTP). Several features observed in the lTP suggest that, while DXR is targeted to the chloroplast, it is localized to the thylakoid lumen. These features include a twin arginine motif, a hydrophobic region, and a proline-rich region. The transit peptide also showed putative motifs for a 14-3-3 binding site with a chaperone phosphorylation site at Thr.


Assuntos
Aldose-Cetose Isomerases/genética , Evolução Molecular , Complexos Multienzimáticos/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Terpenos/metabolismo , Proteínas 14-3-3/química , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/classificação , Sequência de Aminoácidos , Arabidopsis/enzimologia , Sítios de Ligação , Biologia Computacional , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/classificação , Oxirredutases/química , Oxirredutases/classificação , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Homologia de Sequência de Aminoácidos
19.
Molecules ; 15(4): 2302-18, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20428043

RESUMO

The biosynthesis of the valuable sesquiterpene anti-malarial, artemisinin, is known to respond to exogenous sugar concentrations. Here young Artemisia annua L. seedlings (strain YU) were used to measure the transcripts of six key genes in artemisinin biosynthesis in response to growth on sucrose, glucose, or fructose. The measured genes are: from the cytosolic arm of terpene biosynthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), farnesyl disphosphate (FPS); from the plastid arm of terpene biosynthesis, 1-deoxyxylulose-5-phosphate synthase (DXS), 1-deoxyxylulouse 5-phosphate reductoisomerase (DXR); from the dedicated artemisinin pathway amorpha-4,11-diene synthase (ADS), and the P450, CYP71AV1 (CYP). Changes in intracellular concentrations of artemisinin (AN) and its precursors, dihydroartemisinic acid (DHAA), artemisinic acid (AA), and arteannuin B (AB) were also measured in response to these three sugars. FPS, DXS, DXR, ADS and CYP transcript levels increased after growth in glucose, but not fructose. However, the kinetics of these transcripts over 14 days was very different. AN levels were significantly increased in glucose-fed seedlings, while levels in fructose-fed seedlings were inhibited; in both conditions this response was only observed for 2 days after which AN was undetectable until day 14. In contrast to AN, on day 1 AB levels doubled in seedlings grown in fructose compared to those grown in glucose. Results showed that transcript level was often negatively correlated with the observed metabolite concentrations. When seedlings were gown in increasing levels of AN, some evidence of a feedback mechanism emerged, but mainly in the inhibition of AA production. Together these results show the complex interplay of exogenous sugars on the biosynthesis of artemisinin in young A. annua seedlings.


Assuntos
Antimaláricos/metabolismo , Artemisia annua/efeitos dos fármacos , Artemisininas/metabolismo , Frutose/farmacologia , Glucose/farmacologia , Sacarose/farmacologia , Artemisia annua/genética , Artemisia annua/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos
20.
Biomolecules ; 10(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046156

RESUMO

Artemisia annua L. and artemisinin, have been used for millennia to treat malaria. We used human liver microsomes (HLM) and rats to compare hepatic metabolism, tissue distribution, and inflammation attenuation by dried leaves of A. annua (DLA) and pure artemisinin. For HLM assays, extracts, teas, and phytochemicals from DLA were tested and IC50 values for CYP2B6 and CYP3A4 were measured. For tissue distribution studies, artemisinin or DLA was orally delivered to rats, tissues harvested at 1 h, and blood, urine and feces over 8 h; all were analyzed for artemisinin and deoxyartemisinin by GC-MS. For inflammation, rats received an intraperitoneal injection of water or lipopolysaccharide (LPS) and 70 mg/kg oral artemisinin as pure drug or DLA. Serum was collected over 8 h and analyzed by ELISA for TNF-α, IL-6, and IL-10. DLA-delivered artemisinin distributed to tissues in higher concentrations in vivo, but elimination remained mostly unchanged. This seemed to be due to inhibition of first-pass metabolism by DLA phytochemicals, as demonstrated by HLM assays of DLA extracts, teas and phytochemicals. DLA was more effective than artemisinin in males at attenuating proinflammatory cytokine production; the data were less conclusive in females. These results suggest that the oral consumption of artemisinin as DLA enhances the bioavailability and anti-inflammatory potency of artemisinin.


Assuntos
Artemisia annua/metabolismo , Artemisininas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Artemisininas/administração & dosagem , Disponibilidade Biológica , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Malária/tratamento farmacológico , Malária/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA