Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 238(6): 2460-2475, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994603

RESUMO

Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2 /abscisic acid (ABA) was examined. We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2 ]-shifts. According to our research, higher [CO2 ] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2 -induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2 ]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2 ]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants. These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Estômatos de Plantas/fisiologia
2.
Plant J ; 104(6): 1582-1602, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058410

RESUMO

Plant elicitor peptides (Peps) are conserved regulators of defense responses and models for the study of damage-associated molecular pattern-induced immunity. Although present as multigene families in most species, the functional relevance of these multigene families remains largely undefined. While Arabidopsis Peps appear largely redundant in function, previous work examining Pep-induced responses in maize (Zm) implied specificity of function. To better define the function of individual ZmPeps and their cognate receptors (ZmPEPRs), activities were examined by assessing changes in defense-associated phytohormones, specialized metabolites and global gene expression patterns, in combination with heterologous expression assays and analyses of CRISPR/Cas9-generated knockout plants. Beyond simply delineating individual ZmPep and ZmPEPR activities, these experiments led to a number of new insights into Pep signaling mechanisms. ZmPROPEP and other poaceous precursors were found to contain multiple active Peps, a phenomenon not previously observed for this family. In all, seven new ZmPeps were identified and the peptides were found to have specific activities defined by the relative magnitude of their response output rather than by uniqueness. A striking correlation was observed between individual ZmPep-elicited changes in levels of jasmonic acid and ethylene and the magnitude of induced defense responses, indicating that ZmPeps may collectively regulate immune output through rheostat-like tuning of phytohormone levels. Peptide structure-function studies and ligand-receptor modeling revealed structural features critical to the function of ZmPeps and led to the identification of ZmPep5a as a potential antagonist peptide able to competitively inhibit the activity of other ZmPeps, a regulatory mechanism not previously observed for this family.


Assuntos
Peptídeos/fisiologia , Defesa das Plantas contra Herbivoria , Zea mays/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Peptídeos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/fisiologia , Zea mays/genética , Zea mays/imunologia , Zea mays/metabolismo
3.
Plant Physiol ; 175(3): 1455-1468, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28931629

RESUMO

To ensure food security, maize (Zea mays) is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand belowground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile ß-selinene and the corresponding nonvolatile antibiotic derivative ß-costic acid. The application of metabolite-based quantitative trait locus mapping using biparental populations, genome-wide association studies, and near-isogenic lines enabled the identification of terpene synthase21 (ZmTps21) on chromosome 9 as a ß-costic acid pathway candidate gene. Numerous closely examined ß-costic acid-deficient inbred lines were found to harbor Zmtps21 pseudogenes lacking conserved motifs required for farnesyl diphosphate cyclase activity. For biochemical validation, a full-length ZmTps21 was cloned, heterologously expressed in Escherichia coli, and demonstrated to cyclize farnesyl diphosphate, yielding ß-selinene as the dominant product. Consistent with microbial defense pathways, ZmTps21 transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional ZmTps21 alleles displayed ß-costic acid levels over 100 µg g-1 fresh weight, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (Diabrotica balteata). In vivo disease resistance assays, using ZmTps21 and Zmtps21 near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of nonvolatile antibiotics, ZmTps21 exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.


Assuntos
Resistência à Doença , Fusarium/fisiologia , Doenças das Plantas/imunologia , Sesquiterpenos/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Zea mays/imunologia , Zea mays/microbiologia , Bioensaio , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Mapeamento Cromossômico , Resistência à Doença/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ligação Genética , Herbivoria/efeitos dos fármacos , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zea mays/enzimologia , Zea mays/genética
4.
Plant Cell Environ ; 38(3): 544-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25052912

RESUMO

Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Transdução de Sinais , Zea mays/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Resposta ao Choque Frio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Zea mays/genética , Zea mays/fisiologia
5.
Essays Biochem ; 66(5): 621-634, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35723080

RESUMO

Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth, tight immune regulation is required to prevent unnecessary rechannelling of valuable resources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of immunity initiated after sensing microbial patterns at the cell surface or pathogen effectors secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation suggests a close interplay of signalling pathways and defense responses downstream of perception that is still poorly understood. This review will focus on controls on plant immunity through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a complete overview, we highlight "what's new in protein kinase/phosphatase signalling" in the immunity field. In addition to phosphoregulation of components in the pattern recognition receptor (PRR) complex, we will cover the actions of the major immunity-relevant intracellular protein kinases/phosphatases in the 'signal relay', namely calcium-regulated kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein kinases (MAPKs), and various protein phosphatases. We discuss how these factors define a phosphocode that generates cellular decision-making 'logic gates', which contribute to signalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation, we summarize strategies employed by pathogens to subvert plant immune phosphopathways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode as the mechanistic control of the PTI-ETI continuum.


Assuntos
Cálcio , Imunidade Vegetal , Proteínas Quinases Ativadas por Mitógeno , Fosfoproteínas Fosfatases , Imunidade Vegetal/fisiologia , Proteínas Quinases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
6.
Nat Plants ; 6(8): 1008-1019, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690890

RESUMO

The survival of all living organisms requires the ability to detect attacks and swiftly counter them with protective immune responses. Despite considerable mechanistic advances, the interconnectivity of signalling modules often remains unclear. A newly characterized protein, IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR), negatively regulates immune responses in both maize and Arabidopsis, with disrupted function resulting in enhanced disease resistance. IRR associates with and promotes canonical splicing of transcripts encoding defence signalling proteins, including the key negative regulator of pattern-recognition receptor signalling complexes, CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28). On immune activation by Plant Elicitor Peptides (Peps), IRR is dephosphorylated, disrupting interaction with CPK28 transcripts and resulting in the accumulation of an alternative splice variant encoding a truncated CPK28 protein with impaired kinase activity and diminished function as a negative regulator. We demonstrate a new mechanism linking Pep-induced post-translational modification of IRR with post-transcriptionally mediated attenuation of CPK28 function to dynamically amplify Pep signalling and immune output.


Assuntos
Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Resistência à Doença , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/fisiologia , Transativadores/fisiologia , Zea mays/metabolismo
7.
Nat Plants ; 6(11): 1375-1388, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106639

RESUMO

Specialized metabolites constitute key layers of immunity that underlie disease resistance in crops; however, challenges in resolving pathways limit our understanding of the functions and applications of these metabolites. In maize (Zea mays), the inducible accumulation of acidic terpenoids is increasingly considered to be a defence mechanism that contributes to disease resistance. Here, to understand maize antibiotic biosynthesis, we integrated association mapping, pan-genome multi-omic correlations, enzyme structure-function studies and targeted mutagenesis. We define ten genes in three zealexin (Zx) gene clusters that encode four sesquiterpene synthases and six cytochrome P450 proteins that collectively drive the production of diverse antibiotic cocktails. Quadruple mutants in which the ability to produce zealexins (ZXs) is blocked exhibit a broad-spectrum loss of disease resistance. Genetic redundancies ensuring pathway resiliency to single null mutations are combined with enzyme substrate promiscuity, creating a biosynthetic hourglass pathway that uses diverse substrates and in vivo combinatorial chemistry to yield complex antibiotic blends. The elucidated genetic basis of biochemical phenotypes that underlie disease resistance demonstrates a predominant maize defence pathway and informs innovative strategies for transferring chemical immunity between crops.


Assuntos
Antibacterianos/biossíntese , Resistência à Doença/genética , Imunidade Inata/genética , Redes e Vias Metabólicas/genética , Zea mays/genética , Resistência à Doença/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Metabolômica , Família Multigênica/genética , Família Multigênica/fisiologia , Proteômica , Zea mays/imunologia , Zea mays/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA