Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(38): 8858-8863, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36123602

RESUMO

Metal halide perovskites quantum dots (MHPQDs) have aroused enormous interest in the photovoltaic and photoelectric disciplines because of their marvelous properties and size characteristics. However, one of the key problems of how to systematically analyze charge carriers trapped by defects is still a challenging task. Here, we study multiphonon processes of the charge carrier trapping by various defects in MHPQDs based on the well-known Huang-Rhys model, in which a method of a full-configuration defect, including different defect species with variable depth and lattice relaxation strength, is developed by introducing a localization parameter in the quantum defect model. With the help of this method, these fast trapping channels for charge carriers transferring from the quantum dot ground state to different defects are found. Furthermore, the dependence of the trapping time on the radius of quantum dot, the defect depth, and temperature is given. These results not only enrich the knowledge of charge carrier trapping processes by defects, but also bring light to the designs of MHPQDs-based photovoltaic and photoelectric devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA