RESUMO
To assess the viability and effectiveness of bioretention cell in enhancing rainwater resource utilization within sponge cities, this study employs field monitoring, laboratory testing, and statistical analysis to evaluate the water purification capabilities of bioretention cell. Findings indicate a marked purification impact on surface runoff, with removal efficiencies of 59.81% for suspended solids (SS), 39.01% for chemical oxygen demand (COD), 37.53% for ammonia nitrogen (NH3-N), and 30.49% for total phosphorus (TP). The treated water largely complies with rainwater reuse guidelines and tertiary sewage discharge standards. Notably, while previous research in China has emphasized water volume control in sponge city infrastructures, less attention has been given to the qualitative aspects and field-based evaluations. This research not only fills that gap but also offers valuable insights and practical implications for bioretention cell integration into sponge city development. Moreover, the methodology and outcomes of this study serve as a benchmark for future sponge city project assessments, offering guidance to relevant authorities.
Assuntos
Cidades , Análise da Demanda Biológica de Oxigênio , China , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodosRESUMO
BACKGROUND: Near 70% of hepatocellular carcinoma (HCC) recurrence is early recurrence within 2-year post surgery. Long non-coding RNAs (lncRNAs) are intensively involved in HCC progression and serve as biomarkers for HCC prognosis. The aim of this study is to construct a lncRNA-based signature for predicting HCC early recurrence. METHODS: Data of RNA expression and associated clinical information were accessed from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database. Recurrence associated differentially expressed lncRNAs (DELncs) were determined by three DEG methods and two survival analyses methods. DELncs involved in the signature were selected by three machine learning methods and multivariate Cox analysis. Additionally, the signature was validated in a cohort of HCC patients from an external source. In order to gain insight into the biological functions of this signature, gene sets enrichment analyses, immune infiltration analyses, as well as immune and drug therapy prediction analyses were conducted. RESULTS: A 4-lncRNA signature consisting of AC108463.1, AF131217.1, CMB9-22P13.1, TMCC1-AS1 was constructed. Patients in the high-risk group showed significantly higher early recurrence rate compared to those in the low-risk group. Combination of the signature, AFP and TNM further improved the early HCC recurrence predictive performance. Several molecular pathways and gene sets associated with HCC pathogenesis are enriched in the high-risk group. Antitumor immune cells, such as activated B cell, type 1 T helper cell, natural killer cell and effective memory CD8 T cell are enriched in patients with low-risk HCCs. HCC patients in the low- and high-risk group had differential sensitivities to various antitumor drugs. Finally, predictive performance of this signature was validated in an external cohort of patients with HCC. CONCLUSION: Combined with TNM and AFP, the 4-lncRNA signature presents excellent predictability of HCC early recurrence.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , alfa-Fetoproteínas , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Aprendizado de Máquina , RNA Longo não Codificante/genética , Estadiamento de NeoplasiasRESUMO
BACKGROUND: Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic lncRNA signature for HCC early recurrence. METHODS: The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. RESULTS: Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the best predictive performance, and combination of those four risk factors further improves the prognostic potential. Moreover, GSEA showed significant enrichment of "E2F TARGETS", "G2M CHECKPOINT", "MYC TARGETS V1" and "DNA REPAIR" pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1 inhibitor and several chemotherapeutic drugs in the low- and high-risk group. CONCLUSIONS: Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which may guide postoperative treatment and recurrence surveillance in HCC patients.
Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia/genética , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Reparo do DNA , Intervalo Livre de Doença , Pontos de Checagem da Fase G2 do Ciclo Celular , Genes myc , Humanos , Imunoterapia , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Prognóstico , Modelos de Riscos Proporcionais , RNA Longo não Codificante/análise , Curva ROC , Fatores de Risco , alfa-Fetoproteínas/análiseRESUMO
Plasmonic Au nanoparticles (NPs) have been commonly used to enhance the photocatalytic activity of Cu2O. Till now, core-shell Au NP@Cu2O composites have been reported in previous studies. Yet, these Au@Cu2O composites only exhibit visible light response. Other special Au nanostructures, such as Au nanorods (NRs) or Au nanobipyramids (NBPs), which possess near-infrared light absorption, were rarely used to endow the near-infrared light response for Cu2O. In this work, for the first time, we used Au NPs, Au NRs, and Au NBPs and employed a handy and universal method to synthesize a series of yolk-shelled Au@Cu2O composites. The results showed that the yolk-shelled Au@Cu2O composites had much higher photocatalytic activity than their solid-shelled ones and pure Cu2O. More importantly, yolk-shelled Au NR@Cu2O and Au NBP@Cu2O composites indeed presented excellent near-infrared light-driven photocatalytic activity, which were impossible for Au NP@Cu2O and pure Cu2O. This outstanding performance for yolk-shelled Au NR@Cu2O and Au NBP@Cu2O could be attributed to the transfer of abundant hot electrons from Au NRs or Au NBPs to Cu2O, and the timely utilization of hot holes on Au through the rich pore channels on their yolk-shelled structure. Furthermore, yolk-shelled Au@Cu2O also showed better stability than pure Cu2O, owing to the migration of the oxidizing holes from Cu2O to Au driven by the built-in electric field. This work may give a guide to fabricate controllable and effective photocatalysts based on plasmonic metals and semiconductors with full solar light-driven photocatalytic activities in the future.
RESUMO
The frequent detection of antibiotics in water bodies gives rise to concerns about their removal technology. In this study, the degradation kinetics and mechanisms of norfloxacin (NOR), a typical fluoroquinolone pharmaceutical, by the UV/peroxydisulfate (PDS) was investigated. NOR could be degraded effectively using this process, and the degradation rate increased with the increasing dosage of PDS but decreased with the increasing concentration of NOR. In real water, the degradation of NOR was slower than that in ultrapure water, which indicated that laboratory results cannot be directly used to predict the natural fate of antibiotics. Further experiments suggested that the degradation of NOR was the most fast under neutral condition, the existence of HA or FA inhibited the degradation of NOR, and the presence of inorganic ions (NO3 -, Cl-, CO3 2- and HCO3 -) had no significant effect on degradation of NOR. Total organic carbon (TOC) removal rate (40%) indicated NOR was not completely mineralized, and six transformation products were identified, and possible degradation pathways of NOR had been proposed. It can be prospected that UV/PDS technology could be used for advanced treatment of wastewater containing fluoroquinolones.
Assuntos
Norfloxacino/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Peróxido de Hidrogênio , Cinética , Oxirredução , Raios UltravioletaRESUMO
Thousand and one amino-acid protein kinases(TAOKs), as a key member of the mitogen-activated protein kinase (MAPK) cascade, has recently attracted widespread attention in the field of anti-cancer research. There are three members of this subfamily: TAOK1, TAOK2, and TAOK3. Studies have shown that members of the TAOK family participate in regulating cell proliferation, apoptosis, migration, and invasion through various pathways, thereby playing an important role in tumorigenesis and progression. This review summarizes the functions of TAOK kinases in tumor cell signal transduction, cell cycle regulation, and the tumor microenvironment, with a particular emphasis on its potential as a target for anti-cancer drugs. Future research will further elucidate the specific mechanisms of action of TAOK kinase in different types of tumors and explore its clinical application prospects.
RESUMO
Employing recent short-term historical rainfall data may enhance the performance of rainwater harvesting systems (RWHs) in response to climate change. However, this assumption lacks extensive research, and the evaluation of RWHs currently relies on long-term historical rainfall time series. This study evaluates the feasibility of this assumption and aims to identify the optimal rainfall time series for evaluating RWH performance under climate change. We evaluated RWHs in residential buildings across 16 Japanese cities utilizing historical rainfall time series of varying lengths and 30-year predicted rainfall time series. The minimum rainfall time series length was obtained based on the similarity index between the evaluation results for historical and future periods. The corresponding optimal series can be determined from the distribution of similarity indices in the minimum length. Finally, we introduce supply pressure indices (SPIs) to summarize the rainfall characteristics of these optimal rainfall time series. Our findings highlight that the minimum rainfall time series length increased from 1 year to 30 years as building non-potable water demand rose and city locations varied. Utilizing rainfall time series incorporating recent rainfall data yielded more dependable evaluation results for RWHs under climate change. These optimal rainfall time series share common characteristics with SPIs ranging from 5.37 to 17.87 mm/d, contingent on the local rainfall patterns. Our study concludes that utilizing recent short-term historical rainfall data is feasible to evaluate and design RWHs under climate change.
RESUMO
Climate change and its negative effects are driving the global shift from fossil fuels to renewable energy sources. To tackle the dependency on traditional energy sources in harsh winter regions and improve heating quality during periods of thermal demand fluctuations, this paper proposes a new distributed heating peak shaving system (DHPS). The system combines municipal heat and clean energy within the secondary network while reducing the return water temperature in the primary network. It comprises solar collectors, electric thermal storage tanks (ETST), and absorption heat pump (AHP) units, integrated into conventional heat exchange stations. The system operates in two modes to manage peak and off-peak loads respectively, with TRNSYS simulation used to evaluate performance across a range of peak-shaving gradients. A multidimensional comprehensive assessment is conducted between the DHPS under optimal peak shaving coefficient (θ) conditions and conventional peak clipping boiler (PCB). Results indicate that DHPS achieves a high primary energy ratio (PER) of 1.251 at θ = 0.5, reducing combustion emissions by nearly 40%. The static payback period (PBP) of the system is 3.5 years. When the electricity price drops to 0.275 CNY, its operational costs are comparable to PCB. DHPS caters to the energy characteristics of cold regions where electricity supply exceeds demand. It enables flexible peak shaving while ensuring the complete utilization of clean energy and effectively utilizing waste heat from power plants.
RESUMO
Interdependent cultures around the world have generally controlled COVID-19 better. We tested this pattern in China based on the rice theory, which argues that historically rice-farming regions of China are more interdependent than wheat-farming areas. Unlike earlier findings, rice-farming areas suffered more COVID-19 cases in the early days of the outbreak. We suspected this happened because the outbreak fell on Chinese New Year, and people in rice areas felt more pressure to visit family and friends. We found historical evidence that people in rice areas visit more family and friends for Chinese New Year than people in wheat areas. In 2020, rice areas also saw more New Year travel. Regional differences in social visits were correlated with COVID-19 spread. These results reveal an exception to the general idea that interdependent culture helps cultures contain COVID-19. When relational duties conflict with public health, interdependence can lead to more spread of disease.
RESUMO
From a Psychology of Working Theory (PWT) perspective, this study aims to explore how career adaptability and decent work mediate the effects of career calling on the resilience of rural-oriented pre-service teachers. The Career Calling Scale, Career Adaptability Scale, Decent Work Scale, and Resilience Scale were used to survey 393 rural-oriented pre-service teachers. The results found that career calling positively predicted the resilience of rural-oriented pre-service teachers; career adaptability mediated the relationship between career calling and resilience of rural-oriented pre-service teachers; decent work mediated the relationship between career calling and resilience of rural oriented pre-service teachers; and career adaptability and decent work play a chain mediating role between career calling and career adaptability of rural-oriented pre-service teachers. Therefore, this study concludes that career calling not only directly influences the resilience of rural-oriented pre-service teachers, but also indirectly influences the resilience of rural-oriented pre-service teachers through career adaptability and decent work.
RESUMO
In recent years, virtual reality training technology (VRTT) has been considered by many scholars as a new training method instead of traditional training (TT) to reduce unsafe behaviors ascribed to construction workers (CWs) and corporate accident rates. However, in this process, a conflict of interest arises among the government, construction enterprises (CEs), and CWs. Therefore, this study introduces a quantitative research method, the three-party evolutionary game and creatively combining them with the product life cycle (PLC) to solve this problem by analyzing the equilibrium and evolutionarily stable strategies of the system. Finally, collaborative players' decision-making behaviors and their sensitivity to critical factors are examined. This paper will illustrate these in each stage through numerical simulations. The results of the study indicate that the government plays a dominant role in the VRTT introduction stage. When the government gives CEs appropriate subsidies, CEs will eventually realize the importance of VRTT for CWs. Then the government will gradually reduce the amount of the subsidies in this process. In addition, we also find that the continually high cost will lead to negative policies by the government, which requires the active cooperation and attitude change from CEs and CWs. Ultimately, the government, CEs and CWs adopt the best strategy in the evolutionary process to facilitate the promotion, application and sustainability of VRTT in the construction industry.
Assuntos
Indústria da Construção , Realidade Virtual , Humanos , Desenvolvimento Sustentável , Evolução Biológica , TecnologiaRESUMO
As a narrow band-gap semiconductor, cuprous oxide (Cu2O) has a relatively high conduction band that can exhibit high driving force for the photocatalytic generation of hydrogen under visible light. Besides, its adjustable morphologies and abundant source also make it possible to be employed as a theoretically optimal photocatalyst. However, the low charge migration and poor stability commonly limit its practical application, and various strategies have been explored in previous studies. In this study, we have novelly utilized Au nanorod (NR) and nanobipyramid (NBP) nanocrystallites as well as rGO nanosheets to boost the photocatalytic activity of Cu2O over hydrogen generation. The ternary rGO wrapped Au@Cu2O with a yolk-shelled structure (y-Au@Cu2O/rGO) was synthesized by a handy and controllable method. When excited by solar light (λ > 400 nm), it was found that the H2 yields of Cu2O/rGO, y-Au nanoparticle@Cu2O/rGO, y-Au NR@Cu2O/rGO, and y-Au NBP@Cu2O/rGO were increased in the order of 248, 702, 1582 and 1894 µmol g-1 in 4 h. The outstanding photocatalytic performances of y-Au NR@Cu2O/rGO and y-Au NBP@Cu2O/rGO could be attributed to the combination function of quick electron transfer of rGO and abundant near-infrared-light-driven hot carriers on Au NRs and NBPs that could inject into Cu2O and then a quick transfer to rGO to participate in H2 reduction. Besides the above results, it was also found that Cu2O maintained good stability after several cycling photocatalysis tests, which could be ascribed to the migration of holes from Cu2O to Au that prevented the photooxidation of Cu2O. This study may give a guide to fabricating controllable and effective photocatalysts based on plasmonic metals, semiconductors, or two-dimensional nanosheets, which possess full-solar-light-driven photocatalytic activities in the future.
RESUMO
Enhanced nucleoside metabolism is one of the hallmarks of cancer. Uridine-cytidine kinase 2 (UCK2) is a rate-limiting enzyme of the pyrimidine salvage synthesis pathway to phosphorylate uridine and cytidine to uridine monophosphate (UMP) and cytidine monophosphate (CMP), respectively. Recent studies have shown that UCK2 is overexpressed in many types of solid and hematopoietic cancers, closely associates with poor prognosis, and promotes cell proliferation and migration in lung cancer and HCCs. Although UCK2 is thought to catalyze sufficient nucleotide building blocks to support the rapid proliferation of tumor cells, we and other groups have recently demonstrated that UCK2 may play a tumor-promoting role in a catalytic independent manner by activating oncogenic signaling pathways, such as STAT3 and EGFR-AKT. By harnessing the catalytic activity of UCK2, several cytotoxic ribonucleoside analogs, such as TAS-106 and RX-3117, have been developed for UCK2-mediated cancer chemotherapy. Moreover, we have demonstrated that the concurrent targeting of the catalytic dependent and independent features of UCK2 could synergistically inhibit tumor growth. These findings suggest that UCK2 may serve as a potential therapeutic target for cancer treatment. In this mini-review, we introduced the genomic localization and protein structure of UCK2, described the role of UCK2 in tumor development, discussed the application of UCK2 in anti-tumor treatment, and proposed concurrent targeting of the catalytic and non-catalytic roles of UCK2 as a potential therapeutic strategy for cancer treatment.
RESUMO
Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.
RESUMO
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.
RESUMO
In addition to cancer-related death, malignant progression also leads to a series of symptoms and side-effects, which would detrimentally affect cancer patients' the quality of life, adversely influence their adherence to treatments, and, therefore, negatively affect their long-term survival. Acupuncture and electroacupuncture (EA), as two classic treatment methods in traditional Chinese medicine, have been widely employed to cure various diseases. Recently, the clinical application of acupuncture and EA in cancer patients has received great attention. In this review, we summarized the clinical application of acupuncture and EA in alleviating the cancer symptoms, reducing the cancer treatment-related side-effects, and relieving the cancer pain. The symptoms and side-effects discussed in this review include fatigue, insomnia, chemotherapy-associated dyspepsia syndrome (CADS), pain, xerostomia, and anxiety and depression. The underlying mechanisms of the therapeutic effects of acupuncture and EA might be related to the regulation of the mitochondrial function, coordination of the activity of the nervous system, adjustment of the production of neurotransmitters, and alleviation of the immune responses. In conclusion, acupuncture and EA have been proved to be beneficial for cancer patients. More research, however, is required to clarify the potential mechanisms behind acupuncture and EA for widespread adoption in clinical application.
RESUMO
Metformin (MET), the most common medicine for type 2 diabetes (T2DM), improves insulin sensitivity by targeting the liver, intestine and other organs. Its impact on expression of the solute carrier (Slc) transporter genes have not been reported in the mechanism of insulin sensitization. In this study, we examined Slc gene expression in the liver and colon of diet-induced obese (DIO) mice treated with MET by transcriptomic analysis. There were 939 differentially expressed genes (DEGs) in the liver of DIO mice vs lean mice, which included 34 Slc genes. MET altered 489 DEGs in the liver of DIO mice, in which 23 were Slc genes. Expression of 20 MET-responsive Slc DEGs was confirmed by qRT-PCR, in which 15 Slc genes were altered in DIO mice and their expressions were restored by MET, including Slc2a10, Slc2a13, Slc5a9, Slc6a14, Slc7a9, Slc9a2, Slc9a3, Slc13a2, Slc15a2, Slc26a3, Slc34a2, Slc37a1, Slc44a4, Slc51b and Slc52a3. While, there were only 97 DEGs in the colon of DIO mice with 5 Slc genes, whose expression was not restored by MET. The data suggest that more genes were altered in the liver over the colon by the high fat diet (HFD). There were 20 Slc genes with alteration confirmed in the liver of DIO mice and 15 of them were restored by MET, which was associated with improvement of insulin sensitivity and obesity. The restoration may improve the uptake of glucose, amino acids, mannose, fructose, 1,5-anhydro-D-glucitol and bumetanide in hepatocytes of the liver of DIO mice. The study provides new insight into the mechanism of metformin action in insulin sensitization and obesity.
Assuntos
Fígado/efeitos dos fármacos , Metformina/farmacologia , Obesidade , Proteínas Carreadoras de Solutos/genética , Animais , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , RNA Mensageiro/metabolismo , Proteínas Carreadoras de Solutos/efeitos dos fármacos , Proteínas Carreadoras de Solutos/metabolismoRESUMO
Initial evidence suggests that cultural differences have consequences for wise reasoning (perspective taking, consideration of change and alternatives, intellectual humility, search for compromise, and adopting an outsider's vantage point), with more reports of wise reasoning about interpersonal conflicts among Japanese (as compared to American) young and middle-aged adults. Similarly, we found that people from the rice-farming area of southern China also exhibited greater wise reasoning when they encountered conflicts with a friend or in the workplace than those from the wheat-farming area of northern China (N = 487, 25 provinces). The relationship between rice farming and wise reasoning was mediated by loyalty/nepotism. This research advances study of the relationship between wisdom and culture. It also provides evidence for the influence of social-ecological factors on wisdom and culture.
RESUMO
Sennoside A (SA) is a bioactive component of Rheum officinale Baill. with an activity of irritant laxative, which has been reported to possess therapeutic potential in various diseases or conditions including obesity, insulin resistance, liver steatosis, prostate cancer and pancreatic cancer progression. However, whether SA has therapeutic potential in hepatocellular carcinoma (HCC) treatment remains elusive. In this study, we treated two HCC cell lines, HepG2 and SMMC-7721 with SA and found that SA selectively inhibited the growth of HCC cells by proliferation assay. SA has a good inhibitory effect on proliferation of HepG2 cells in a concentration dependent manner, but there was no effect on SMMC-7721 cells. Then we conducted transwell assays and transcriptome analysis in HCC cells and examined the effects of SA on HCC in vivo. The results showed that SA significantly inhibited the migration and invasion of HCC. Comparison of RNA-seq transcriptome profiles from control groups and SA-treated groups identified 171 and 264 differentially expressed genes (DEGs) in HepG2 and SMMC-7721 cells respectively, in which includes 2 overlapping up-regulated DEGs and 12 overlapping down-regulated DEGs between HepG2 and SMMC-7721 cells. The qPCR were applied to investigate the transcriptional level of 9 overlapping down-regulated DEGs related to cancer metastasis, and the results were consistent with RNA-seq data. The dominate pathways including Wnt signaling pathway, TNF signaling pathway, VEGF signaling pathway, and NF-κB signaling pathway were strongly inhibited by SA, which are involved in regulating cancer metastasis. Finally, we confirmed that the downregulation of KRT7 and KRT81 could inhibit HCC metastasis. This study has provided new insight into the understanding of the inhibitory effects and potential targets of SA on the metastasis of HCC.
RESUMO
Bamboo-shaped rainwater harvesting ditch (BRHD) is a new water harvesting and application technology being promoted in the hilly loess region of North Shannxi Province. This paper measured the soil moisture condition and water storage capacity of BRHDs filled with straw, branch or gravel through field and simulated rainfall experiments to evaluate the water holding and absorption capacity of different BRHD fillers. From May to October, the water storage of BRHDs showed a decrease trend at first and then increased in field experiment. The water storage depths within 30-200 cm profile of branch ditch (BD), gravel ditch (GD) and straw ditch (SD) were 186.76, 177.23 and 169.26 mm in May, respectively, and increased by 14.24, 20.28 and 21.23 mm in October, respectively. In contrast, the water storage depth of the level bench was reduced by 6.52 mm in October from 185.76 mm in May. The soil water restoration depth was different between BRHDs with different fillers and the level bench within 30-200 cm profile in October. The SD and BD had the deepest restoration depth (140 cm), followed by GD (110 cm), and the level bench was the minimum (80 cm). Through rainfall simulation experiment, the amount of water intercepted by BRHD was in the order of SD (99.5 L) > GD (91 L) > BD (71.5 L). The water-holding rate of straw and branch showed logarithmic function with soaking time, while the water-absorption rate followed a power function. Moreover, there was a negative logarithm correlation between water-holding rate and water-absorption rate. Straw showed a better water holding and absorption capacity than branch. Gravel had a weak water holding and absorption capacity which was almost not changed during soaking, while it displayed a negative liner correlation between water holding rate and absorption rate. The three kinds of BRHDs could be applied in the hilly loess region, and that filled with straw would exhibit the best capacity of water interception and holding.