Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38703096

RESUMO

CONTEXT: Childhood obesity continues to be a critical public health concern with far-reaching implications for the well-being. OBJECTIVE: This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6-9 years in China. METHODS: This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry (DXA) was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS: A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). By using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate (FDR) correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (ß: -1.373--0.016, pFDR: <0.001-0.031; ß: -1.008--0.071, pFDR: 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (ß: 0.023-2.396, pFDR: <0.001; ß: 0.014-1.736, pFDR: <0.001-0.049). CONCLUSION: Plasma and fecal metabolites such as glutamine may serve as a potential therapeutic target for the development of obesity.

2.
Front Nutr ; 10: 1278617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125730

RESUMO

Background: Minerals and trace elements were involved in the pathogenesis and progression of diabetes. However, the association of mixed exposure to essential elements and toxic elements with gestational diabetes mellitus (GDM) is poorly understood. Objective: This study aims to examine the associations between serum calcium (Ca), iron (Fe), zinc (Zn), copper (Cu), magnesium (Mg), and cadmium (Cd) concentrations in early pregnancy and GDM risk in Chinese pregnant women. Method: A total of 1,168 pregnant women were included in this prospective cohort study. The concentrations of serum elements were measured using the polarography method before 14 gestational weeks and an oral glucose tolerance test was conducted at 24-28 gestational weeks to diagnose GDM. Binary logistic regression analysis and restricted cubic spline were applied to evaluate the association between serum individual element and GDM. Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression were used to assess the associations between mixed essential elements and Cd exposure and GDM risk. Results: The mean concentrations of Zn (124.65 vs. 120.12 µmol/L), Fe (135.26 vs. 132.21 µmol/L) and Cu (23.33 vs. 23.03 µmol/L) in the GDM group were significantly higher than those in the control group. Single-element modeling results suggested that second and fourth-quartile maternal Zn and Fe concentration, third and fourth-quartile Cu concentration and fourth-quartile Ca concentration were associated with an increased risk of GDM compared to first-quartile values. Restricted cubic spline analysis showed U-shaped and non-linear relationships between Cd and GDM. According to the BKMR models and WQS analyses, a six-element mixture was significantly and positively associated with the risk of GDM. Additionally, Cd, Zn, and Cu contributed the most strongly to the association. Conclusion: Serum Zn, Cu, Fe, and Ca exposure during early pregnancy showed a positive association with GDM in the individual evaluation. The multiple-evaluation showed that high levels of elements mixture, particularly Cd, Zn, and Cu, may promote the development of GDM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA