RESUMO
Interferon-γ (IFNγ) is an important mediator of cellular immune responses, but high systemic levels of this cytokine are associated with immunopathology. IFNγ binds to its receptor (IFNγR) and to extracellular matrix (ECM) via four positively charged C-terminal amino acids (KRKR), the ECM-binding domain (EBD). Across evolution, IFNγ is not well conserved, but the EBD is highly conserved, suggesting a critical function. Here, we show that IFNγ lacking the EBD (IFNγΔKRKR) does not bind to ECM but still binds to the IFNγR and retains bioactivity. Overexpression of IFNγΔKRKR in tumors reduced local ECM binding, increased systemic levels and induced sickness behavior, weight loss and toxicity. To analyze the function of the EBD during infection, we generated IFNγΔKRKR mice lacking the EBD by using CRISPR-Cas9. Infection with lymphocytic choriomeningitis virus resulted in higher systemic IFNγΔKRKR levels, enhanced sickness behavior, weight loss and fatal toxicity. We conclude that local retention of IFNγ is a pivotal mechanism to protect the organism from systemic toxicity during prolonged immune stimulation.
Assuntos
Citocinas , Neoplasias , Camundongos , Animais , Citocinas/metabolismo , Interferon gama/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismoRESUMO
BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by a life-threatening cytokine storm and immunopathology. Familial HLH type 3 (FHL3) accounts for approximately 30% of all inborn HLH cases worldwide. It is caused by mutations in the UNC13D gene that result in impaired degranulation of cytotoxic vesicles and hence compromised T-cell- and natural killer-cell-mediated killing. Current treatment protocols, including allogeneic hematopoietic stem cell (HSC) transplantation, still show high mortality. OBJECTIVE: We sought to develop and evaluate a curative genome editing strategy in the preclinical FHL3 Jinx mouse model. Jinx mice harbor a cryptic splice donor site in Unc13d intron 26 and develop clinical symptoms of human FHL3 upon infection with lymphocytic choriomeningitis virus (LCMV). METHODS: We employed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technology to delete the disease-causing mutation in HSCs and transplanted Unc13d-edited stem cells into busulfan-conditioned Jinx recipient mice. Safety studies included extensive genotyping and chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq)-based off-target analyses. Cure from HLH predisposition was assessed by LCMV infection. RESULTS: Hematopoietic cells isolated from transplanted mice revealed efficient gene editing (>95%), polyclonality of the T-cell receptor repertoire, and neither signs of off-target effects nor leukemogenesis. Unc13d transcription levels of edited and wild-type cells were comparable. While LCMV challenge resulted in acute HLH in Jinx mice transplanted with mock-edited HSCs, Jinx mice grafted with Unc13d-edited cells showed rapid virus clearance and protection from HLH. CONCLUSIONS: Our study demonstrates that transplantation of CRISPR-Cas edited HSCs supports the development of a functional polyclonal T-cell response in the absence of genotoxicity-associated clonal outgrowth.
Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Camundongos , Animais , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfócitos T , Edição de Genes , Mutação , Vírus da Coriomeningite Linfocítica , Células-Tronco Hematopoéticas , Proteínas de Membrana/genéticaRESUMO
The two T-box transcription factors T-bet and Eomesodermin (Eomes) are important regulators of cytotoxic lymphocytes (CTLs), such as activated CD8 T cells, which are essential in the fight against intracellular pathogens and tumors. Both transcription factors share a great degree of homology based on sequence analysis and as a result exert partial functional redundancy during viral infection. However, the actual degree of redundancy between T-bet and Eomes remains a matter of debate and is further confounded by their distinct spatiotemporal expression pattern in activated CD8 T cells. To directly investigate the functional overlap of these transcription factors, we generated a new mouse model in which Eomes expression is under the transcriptional control of the endogenous Tbx21 (encoding for T-bet) locus. Applying this model, we demonstrate that the induction of Eomes in lieu of T-bet cannot rescue T-bet deficiency in CD8 T cells during acute lymphocytic choriomeningitis virus (LCMV) infection. We found that the expression of Eomes instead of T-bet was not sufficient for early cell expansion or effector cell differentiation. Finally, we show that imposed expression of Eomes after acute viral infection promotes some features of exhaustion but must act in concert with other factors during chronic viral infection to establish all hallmarks of exhaustion. In summary, our results clearly underline the importance of T-bet in guiding canonical CTL development during acute viral infections.
Assuntos
Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica/fisiologia , Interferon gama/metabolismo , Camundongos TransgênicosRESUMO
NK1.1+ cells found in salivary glands (SG) represent a unique cell population of innate lymphoid cells (ILC) with characteristics of both conventional NK cells and ILC1. Here, we demonstrate that these NK1.1+ cells limit the accumulation and differentiation of virus-specific tissue-resident memory CD8+ T cells (TRM cells) in SG of mice infected with lymphocytic choriomeningitis virus (LCMV). The negative regulation of LCMV-specific CD8+ TRM cells by NK1.1+ cells in SG is independent of NKG2D, NKp46, TRAIL, and perforin. Moreover, analysis of NKp46iCre+ Eomesfl/fl mice revealed that Eomes-dependent conventional NK cells are dispensable for negative regulation. Since the SG are prone to autoimmune reactions, regulation of TRM cells by tissue-resident ILC may be particularly important to prevent immunopathology in this organ.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Glândulas Salivares/imunologia , Animais , Diferenciação Celular/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Perforina/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologiaRESUMO
SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.
Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Proteínas Qa-SNARE , Animais , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Masculino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral , ExocitoseRESUMO
Primary hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome caused by impaired lymphocyte cytotoxicity. First-line therapeutic regimens directed against activated immune cells or secreted cytokines show limited efficacy since they do not target the underlying immunological problem: defective lymphocyte cytotoxicity causing prolonged immune stimulation. A potential rescue strategy would be the adoptive transfer of ex vivo gene-corrected autologous T cells. However, transfusion of cytotoxicity-competent T cells under conditions of hyperinflammation may cause more harm than benefit. As a proof-of-concept for adoptive T cell therapy (ATCT) under hyperinflammatory conditions, we transferred syngeneic, cytotoxicity-competent T cells into mice with virally triggered active primary HLH. ATCT with functional syngeneic trigger-specific T cells cured Jinx mice from active HLH without life-threatening side effects and protected Perforin-deficient mice from lethal HLH progression by reconstituting cytotoxicity. Cured mice were protected long-term from HLH relapses. A threshold frequency of transferred T cells with functional differentiation was identified as a predictive biomarker for long-term survival. This study is the first proof-of-concept for ATCT in active HLH.
Assuntos
Linfo-Histiocitose Hemofagocítica , Camundongos , Animais , Linfo-Histiocitose Hemofagocítica/terapia , Terapia Baseada em Transplante de Células e TecidosRESUMO
Familial hemophagocytic lymphohistiocytosis (FHL) is a group of life-threatening, autosomal recessive disorders of severe hyperinflammation. FHL type 3 (FHL-3) accounts for about 30% of FHL cases. It is characterized by mutations in the UNC13D gene that give rise to functionally impaired or absent Munc13-4 protein, resulting in impaired secretion of lytic granules by cytotoxic lymphocytes. Etoposide-based therapy is currently used as the standard of care that results in around 60% 5-year survival, illustrating the need for novel treatment approaches. Key problems include treatment toxicity and failure to induce or maintain remission of the hyperinflammation. Instead of immunosuppression, transplantation of autologous gene-corrected T cells can be envisaged as an approach to restore the impaired immune reaction. This study established a protocol that enabled hyperactivated, FHL-3 patient-derived T cells to be cultured and a codon-optimized UNC13D expression cassette to be delivered by either alpha- or gamma-retroviral gene transfer. The data demonstrate that the established protocol can be applied to FHL-3 patient cells with various genetic backgrounds and that gamma-retroviral UNC13D transfer restored expression of functional Munc13-4, as well as degranulation capacity and cell-mediated cytotoxicity of those patient-derived CD8+ T cells. Furthermore, the study shows that the co-introduction of a truncated low-affinity nerve growth factor receptor coding sequence enabled the therapeutic effect to be optimized by enriching transduced cells in a Good Manufacturing Practice-compliant manner. In conclusion, this study lays the foundation for an adaptive immune cell therapy approach aiming at immunological stabilization of FHL-3 patients with autologous, immune-competent T cells prior to hematopoietic stem-cell transplantation.